Pattern recognition and machine learning for magnetic resonance images with kernel methods

The aim of this thesis is to apply a particular category of machine learning and pattern recognition algorithms, namely the kernel methods, to both functional and anatomical magnetic resonance images (MRI). This work specifically focused on supervised learning methods. Both methodological and practical aspects are described in this thesis. Kernel methods have the computational advantage for high dimensional data, therefore they are idea for imaging data. The procedures can be broadly divided into two components: the construction of the kernels and the actual kernel algorithms themselves. Pre-processed functional or anatomical images can be computed into a linear kernel or a non-linear kernel. We introduce both kernel regression and kernel classification algorithms in two main categories: probabilistic methods and non-probabilistic methods. For practical applications, kernel classification methods were applied to decode the cognitive or sensory states of the subject from the fMRI signal and were also applied to discriminate patients with neurological diseases from normal people using anatomical MRI. Kernel regression methods were used to predict the regressors in the design of fMRI experiments, and clinical ratings from the anatomical scans.

[1]  Tom Michael Mitchell,et al.  From the SelectedWorks of Marcel Adam Just 2008 Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings , 2016 .

[2]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[3]  Lars Kai Hansen,et al.  Nonlinear versus Linear Models in Functional Neuroimaging: Learning Curves and Generalization Crossover , 1997, IPMI.

[4]  Younjeong Lee,et al.  The Estimating Optimal Number of Gaussian Mixtures Based on Incremental k-means for Speaker Identification , 2006 .

[5]  M. Hamilton A RATING SCALE FOR DEPRESSION , 1960, Journal of neurology, neurosurgery, and psychiatry.

[6]  Eric M Reiman,et al.  Cognitive domain decline in healthy apolipoprotein E epsilon4 homozygotes before the diagnosis of mild cognitive impairment. , 2007, Archives of neurology.

[7]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[8]  Carl E. Rasmussen,et al.  Healing the relevance vector machine through augmentation , 2005, ICML.

[9]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[10]  Nick C Fox,et al.  Automatic classification of MR scans in Alzheimer's disease. , 2008, Brain : a journal of neurology.

[11]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[12]  Wen-Lian Hsu,et al.  Predicting RNA-binding sites of proteins using support vector machines and evolutionary information , 2008, BMC Bioinformatics.

[13]  Rajkumar Buyya,et al.  Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities , 2008, 2008 10th IEEE International Conference on High Performance Computing and Communications.

[14]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[15]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[16]  Nick C. Fox,et al.  A plea for confidence intervals and consideration of generalizability in diagnostic studies , 2008, Brain.

[17]  R. Savoy Functional Magnetic Resonance Imaging (fMRI) , 2002 .

[18]  I. Jolliffe Principal Component Analysis , 2002 .

[19]  C. Jack,et al.  Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) , 2005, Alzheimer's & Dementia.

[20]  Bernhard Schölkopf,et al.  A tutorial on v-support vector machines , 2005 .

[21]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[22]  W. Drevets Neuroimaging studies of mood disorders , 2000, Biological Psychiatry.

[23]  Gerd Gigerenzer,et al.  Adaptive Thinking: Rationality in the Real World , 2000 .

[24]  Jody Tanabe,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Comparison Blockinof Blockindetrending Blockinmethods Blockinfor Optimal Blockinfmri Blockinpreprocessing , 2022 .

[25]  Clifford R. Jack,et al.  Alzheimer's disease diagnosis in individual subjects using structural MR images: Validation studies , 2008, NeuroImage.

[26]  M. Miller Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.

[27]  Paul R. Solomon,et al.  Should we screen for Alzheimer's disease? , 2005 .

[28]  et al.,et al.  Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline , 2008, NeuroImage.

[29]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[30]  Stefan Klöppel,et al.  White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington's disease. , 2008, Brain : a journal of neurology.

[31]  Pedro M. Domingos Occam's Two Razors: The Sharp and the Blunt , 1998, KDD.

[32]  Jane S. Paulsen,et al.  A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length , 2004, Clinical genetics.

[33]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[34]  R. Tibshirani,et al.  Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins , 2007, Nature Medicine.

[35]  Essa Yacoub,et al.  The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics , 2003, NeuroImage.

[36]  Dinggang Shen,et al.  Classification of Structural Images via High-Dimensional Image Warping, Robust Feature Extraction, and SVM , 2005, MICCAI.

[37]  C. Jack,et al.  11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. , 2008, Brain : a journal of neurology.

[38]  J. Platt Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .

[39]  William Stafford Noble,et al.  Support vector machine , 2013 .

[40]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[41]  A. P. Dawid,et al.  Generative or Discriminative? Getting the Best of Both Worlds , 2007 .

[42]  渡辺 慧,et al.  Knowing and guessing : a quantitative study of inference and information , 1969 .

[43]  Karl J. Friston,et al.  Computing average shaped tissue probability templates , 2009, NeuroImage.

[44]  David J. C. MacKay,et al.  The Evidence Framework Applied to Classification Networks , 1992, Neural Computation.

[45]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[46]  Gunhild Waldemar,et al.  Evidence-based Evaluation of Magnetic Resonance Imaging as a Diagnostic Tool in Dementia Workup , 2005, Topics in magnetic resonance imaging : TMRI.

[47]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003 .

[48]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[49]  M. Brammer,et al.  Pattern Classification of Sad Facial Processing: Toward the Development of Neurobiological Markers in Depression , 2008, Biological Psychiatry.

[50]  Boualem Boashash,et al.  The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..

[51]  A. Detsky,et al.  Evidence-based medicine. A new approach to teaching the practice of medicine. , 1992, JAMA.

[52]  Christopher K. I. Williams Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.

[53]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[54]  S. Resnick,et al.  Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging , 2008, Neurobiology of Aging.

[55]  Maja Pohar Perme,et al.  Comparison of logistic regression and linear discriminant analysis , 2004, Advances in Methodology and Statistics.

[56]  D. Mackay,et al.  Introduction to Gaussian processes , 1998 .

[57]  Takashi Asada,et al.  Voxel-based morphometry to discriminate early Alzheimer's disease from controls , 2005, Neuroscience Letters.

[58]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[59]  V. Calhoun,et al.  A Review of Challenges in the Use of fMRI for Disease Classification / Characterization and A Projection Pursuit Application from A Multi-site fMRI Schizophrenia Study , 2008, Brain Imaging and Behavior.

[60]  H. Akaike A new look at the statistical model identification , 1974 .

[61]  A. Morelli Inverse Problem Theory , 2010 .

[62]  Richard S. J. Frackowiak,et al.  Navigation-related structural change in the hippocampi of taxi drivers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[64]  Massimiliano Pontil,et al.  Properties of Support Vector Machines , 1998, Neural Computation.

[65]  Ilkay Ulusoy,et al.  Comparison of Generative and Discriminative Techniques for Object Detection and Classification , 2006, Toward Category-Level Object Recognition.

[66]  Janaina Mourão Miranda,et al.  Unsupervised analysis of fMRI data using kernel canonical correlation , 2007, NeuroImage.

[67]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[68]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[69]  Michael I. Miller,et al.  Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer type , 2007, IEEE Transactions on Medical Imaging.

[70]  E. Tangalos,et al.  CME Practice parameter: , 2022 .

[71]  D P Salmon,et al.  Measuring cognitive change in a cohort of patients with Alzheimer's disease. , 2000, Statistics in medicine.

[72]  João Ricardo Sato,et al.  An fMRI normative database for connectivity networks using one‐class support vector machines , 2009, Human brain mapping.

[73]  Jane S. Paulsen,et al.  Preparing for preventive clinical trials: the Predict-HD study. , 2006, Archives of neurology.

[74]  T. C. Hsiang,et al.  A Bayesian View on Ridge Regression , 1975 .

[75]  Karl J. Friston,et al.  Bayesian decoding of brain images , 2008, NeuroImage.

[76]  J Ashburner,et al.  Computational neuroanatomy: new perspectives for neuroradiology. , 2001, Revue neurologique.

[77]  Hans Knutsson,et al.  Detection and detrending in fMRI data analysis , 2004, NeuroImage.

[78]  E. Twamley,et al.  Neuropsychological and neuroimaging changes in preclinical Alzheimer's disease , 2006, Journal of the International Neuropsychological Society.

[79]  Dinggang Shen,et al.  Multivariate examination of brain abnormality using both structural and functional MRI , 2007, NeuroImage.

[80]  Timo Grimmer,et al.  Mapping scores onto stages: mini-mental state examination and clinical dementia rating. , 2006, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[81]  W. Eric L. Grimson,et al.  Discriminative Analysis for Image-Based Studies , 2002, MICCAI.

[82]  P. Bartlett,et al.  Probabilities for SV Machines , 2000 .

[83]  David M. J. Tax,et al.  One-class classification , 2001 .

[84]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[85]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[86]  Nick C Fox,et al.  Computer-assisted imaging to assess brain structure in healthy and diseased brains , 2003, The Lancet Neurology.

[87]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[88]  Mark Buchanan,et al.  The Social Atom: Why the Rich Get Richer, Cheaters Get Caught, and Your Neighbor Usually Looks Like You , 2007 .

[89]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[90]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[91]  C D Good,et al.  The distribution of structural neuropathology in pre-clinical Huntington's disease. , 2002, Brain : a journal of neurology.

[92]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[93]  R. Turner,et al.  Characterization and Correction of Interpolation Effects in the Realignment of fMRI Time Series , 2000, NeuroImage.

[94]  Karl J. Friston,et al.  Dynamic discrimination analysis: A spatial–temporal SVM , 2007, NeuroImage.

[95]  Earl Hunt,et al.  Book Review: Adaptive Thinking: Rationality in the Real World , 2003 .

[96]  Yaakov Stern,et al.  Structural MRI covariance patterns associated with normal aging and neuropsychological functioning , 2007, Neurobiology of Aging.

[97]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[98]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[99]  Dinggang Shen,et al.  COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements , 2007, IEEE Transactions on Medical Imaging.

[100]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[101]  Michael Marriott,et al.  Lower hippocampal volume in patients suffering from depression: a meta-analysis. , 2004, The American journal of psychiatry.

[102]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[103]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[104]  R. Dolan,et al.  Fmri activity patterns in human loc carry information about object exemplars within category , 2008 .

[105]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[106]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[107]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[108]  Sterling C. Johnson,et al.  Relationship of cognitive measures and gray and white matter in Alzheimer's disease. , 2006, Journal of Alzheimer's disease : JAD.

[109]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[110]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[111]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[112]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[113]  A. Dale,et al.  Late Onset of Anterior Prefrontal Activity during True and False Recognition: An Event-Related fMRI Study , 1997, NeuroImage.

[114]  Eric Vermetten,et al.  Reduced volume of orbitofrontal cortex in major depression , 2002, Biological Psychiatry.

[115]  Carlos E. Thomaz,et al.  Using a Maximum Uncertainty LDA-Based Approach to Classify and Analyse MR Brain Images , 2004, MICCAI.

[116]  Nick C Fox,et al.  Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method , 2008, Brain : a journal of neurology.

[117]  Dinggang Shen,et al.  Morphological classification of brains via high-dimensional shape transformations and machine learning methods , 2004, NeuroImage.

[118]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[120]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[121]  Michael J. Martinez,et al.  Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template , 2007, Human brain mapping.

[122]  Jane S. Paulsen,et al.  Automatic detection of preclinical neurodegeneration , 2009, Neurology.

[123]  Malcolm R. Forster,et al.  Predictive Accuracy as an Achievable Goal of Science , 2002, Philosophy of Science.

[124]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[125]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[126]  Karen M. Gosche,et al.  Very Early Detection of Alzheimer Neuropathology and the Role of Brain Reserve in Modifying Its Clinical Expression , 2005, Journal of geriatric psychiatry and neurology.

[127]  Janaina Mourão Miranda,et al.  The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data , 2006, NeuroImage.

[128]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[129]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[130]  Jair C. Soares,et al.  Smaller Cingulate Volumes in Unipolar Depressed Patients , 2006, Biological Psychiatry.

[131]  L. Deecke,et al.  The Preparation and Execution of Self-Initiated and Externally-Triggered Movement: A Study of Event-Related fMRI , 2002, NeuroImage.

[132]  D. Attwell,et al.  The neural basis of functional brain imaging signals , 2002, Trends in Neurosciences.

[133]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[134]  Cheng-Yuan Liou,et al.  Dynamic Positron Emission Tomography Data-Driven Analysis Using Sparse Bayesian Learning , 2008, IEEE Transactions on Medical Imaging.

[135]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[136]  E. Tangalos,et al.  Mayo Clinic Alzheimer’s Disease Patient Registry , 1990, Aging.

[137]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[138]  P. McKenzie,et al.  Selecting the optimal number of components for a Gaussian mixture model , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[139]  S.C. Strother,et al.  Evaluating fMRI preprocessing pipelines , 2006, IEEE Engineering in Medicine and Biology Magazine.

[140]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[141]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[142]  R. Spitzer Dsm-IV Casebook: A Learning Companion to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition , 1994 .

[143]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[144]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[145]  Alain Rakotomamonjy,et al.  Variable Selection Using SVM-based Criteria , 2003, J. Mach. Learn. Res..

[146]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[147]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[148]  J C Baker,et al.  Regulation of enzyme activity by glucagon: increased hormonal activity of iodinated glucagon. , 1975, Advances in enzyme regulation.

[149]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[150]  Nick C. Fox,et al.  Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates , 2004, NeuroImage.

[151]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[152]  J Kassubek,et al.  Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[153]  Bill C White,et al.  Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases , 2003, BMC Bioinformatics.

[154]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[155]  A. Grinvald,et al.  Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping , 1996, Science.

[156]  David G. Stork,et al.  Pattern Classification , 1973 .

[157]  Wen-Lian Hsu,et al.  Protein subcellular localization prediction based on compartment-specific features and structure conservation , 2007, BMC Bioinformatics.

[158]  D. Hassabis,et al.  Decoding Neuronal Ensembles in the Human Hippocampus , 2009, Current Biology.

[159]  Michael I. Miller,et al.  Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia , 2007, NeuroImage.

[160]  Xiaoying Wu,et al.  Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern classification study , 2008, NeuroImage.

[161]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[162]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[163]  Christos Davatzikos,et al.  Voxel-Based Morphometry Using the RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy , 2001, NeuroImage.

[164]  C. Jack,et al.  Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia , 2002, Neurology.

[165]  I. Jolliffe A Note on the Use of Principal Components in Regression , 1982 .

[166]  Carlos E. Thomaz,et al.  Hyperplane navigation: A method to set individual scores in fMRI group datasets , 2008, NeuroImage.

[167]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[168]  P. Gopikrishnan,et al.  Inverse cubic law for the distribution of stock price variations , 1998, cond-mat/9803374.

[169]  András A. Benczúr,et al.  Methods for large scale SVD with missing values , 2007 .

[170]  C. R. Henderson ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS , 1953 .

[171]  A. Stoll,et al.  Frontal lobe gray matter density decreases in bipolar I disorder , 2004, Biological Psychiatry.

[172]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[173]  Alain Trouvé,et al.  Bayesian template estimation in computational anatomy , 2008, NeuroImage.

[174]  M. MacDonald,et al.  CAG repeat number governs the development rate of pathology in Huntington's disease , 1997, Annals of neurology.

[175]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[176]  John Ashburner,et al.  Kernel regression for fMRI pattern prediction , 2011, NeuroImage.

[177]  Karl J. Friston,et al.  Identifying global anatomical differences: Deformation‐based morphometry , 1998 .

[178]  Clifford R. Jack,et al.  Interpreting scan data acquired from multiple scanners: A study with Alzheimer's disease , 2008, NeuroImage.

[179]  Wilkin Chau,et al.  The Talairach coordinate of a point in the MNI space: how to interpret it , 2005, NeuroImage.

[180]  Lei Wang,et al.  Correlations Between Antemortem Hippocampal Volume and Postmortem Neuropathology in AD Subjects , 2004, Alzheimer disease and associated disorders.

[181]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .