Experimental Characterization and Static Modeling of McKibben

[1]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  Patrick van der Smagt,et al.  Analysis and control of a rubbertuator arm , 1996, Biological Cybernetics.

[3]  Pierre Lopez,et al.  The McKibben muscle and its use in actuating robot‐arms showing similarities with human arm behaviour , 1997 .

[4]  Blake Hannaford,et al.  Fatigue characteristics of McKibben artificial muscle actuators , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[5]  Kazuhiko Kawamura,et al.  A frequency modeling method of rubbertuators for control application in an IMA framework , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[6]  R. Quinn,et al.  Modeling of braided pneumatic actuators for robotic control , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[7]  Andrea Manuello Bertetto,et al.  Flexible Pneumatic Actuators: A Comparison between The McKibben and the Straight Fibres Muscles , 2001, J. Robotics Mechatronics.

[8]  Daniel A. Kingsley,et al.  Fatigue life and frequency response of braided pneumatic actuators , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Darwin G. Caldwell,et al.  Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators , 2006, Int. J. Robotics Res..

[10]  Dirk Lefeber,et al.  Pleated pneumatic artificial muscles: compliant robotic actuators , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[11]  Kon Well Wang,et al.  Nonlinear-elastic finite axisymmetric deformation of flexible matrix composite membranes under internal pressure and axial force , 2006 .

[12]  Christopher D. Rahn,et al.  Optimal, Model-Based Design of Soft Robotic Manipulators , 2008 .

[13]  W. Liu,et al.  Fiber-Reinforced Membrane Models of McKibben Actuators , 2003 .

[14]  Taichi Shiiba,et al.  Development of a muscle suit for the upper body—realization of abduction motion , 2004, Adv. Robotics.

[15]  N. Delson,et al.  Modeling and implementation of McKibben actuators for a hopping robot , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[16]  Blake Hannaford,et al.  Artificial Muscles : Actuators for Biorobotic Systems , 1999 .

[17]  Nikolaos G. Tsagarakis,et al.  Improved modelling and assessment of pneumatic muscle actuators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Kazuhiko Kawamura,et al.  Dynamic pneumatic actuator model for a model-based torque controller , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[19]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[20]  K. W. Wang,et al.  Fibrillar Network Adaptive Structure with Ion-transport Actuation , 2006 .

[21]  Nikolaos G. Tsagarakis,et al.  Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators , 2003, Int. J. Robotics Res..

[22]  Ching-Ping Chou,et al.  Static and dynamic characteristics of McKibben pneumatic artificial muscles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[23]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[24]  D G Caldwell,et al.  Biomimetic actuators in prosthetic and rehabilitation applications. , 2002, Technology and health care : official journal of the European Society for Engineering and Medicine.

[25]  Roger D. Quinn,et al.  Design and control of a robotic leg with braided pneumatic actuators , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[26]  Blake Hannaford,et al.  Accounting for elastic energy storage in McKibben artificial muscle actuators , 2000 .

[27]  V. L. Nickel,et al.  DEVELOPMENT OF USEFUL FUNCTION IN THE SEVERELY PARALYZED HAND. , 1963, The Journal of bone and joint surgery. American volume.

[28]  Bertrand Tondu,et al.  Nonlinear parametric identification of a McKibben artificial pneumatic muscle using flatness property of the system , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[29]  G.S. Sawicki,et al.  Powered lower limb orthoses: applications in motor adaptation and rehabilitation , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[30]  Karsten Berns,et al.  Joint control of the six-legged robot AirBug driven by fluidic muscles , 2002, Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02..

[31]  Richard Quint van der Linde,et al.  Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles , 1999, IEEE Trans. Robotics Autom..

[32]  Bertrand Tondu,et al.  A Seven-degrees-of-freedom Robot-arm Driven by Pneumatic Artificial Muscles for Humanoid Robots , 2005, Int. J. Robotics Res..