SpotFi: Decimeter Level Localization Using WiFi

This paper presents the design and implementation of SpotFi, an accurate indoor localization system that can be deployed on commodity WiFi infrastructure. SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems. SpotFi makes two key technical contributions. First, SpotFi incorporates super-resolution algorithms that can accurately compute the angle of arrival (AoA) of multipath components even when the access point (AP) has only three antennas. Second, it incorporates novel filtering and estimation techniques to identify AoA of direct path between the localization target and AP by assigning values for each path depending on how likely the particular path is the direct path. Our experiments in a multipath rich indoor environment show that SpotFi achieves a median accuracy of 40 cm and is robust to indoor hindrances such as obstacles and multipath.

[1]  Ernst Bonek,et al.  Number of multipath clusters in indoor MIMO propagation environments , 2004 .

[2]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[3]  Chuck Rieger,et al.  PinPoint: An Asynchronous Time-Based Location Determination System , 2006, MobiSys '06.

[4]  Guobin Shen,et al.  Pharos: enable physical analytics through visible light based indoor localization , 2013, HotNets.

[5]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[6]  Jie Xiong,et al.  Phaser: enabling phased array signal processing on commodity WiFi access points , 2014, MobiCom.

[7]  Andy Hopper,et al.  The active badge location system , 1992, TOIS.

[8]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[9]  Umberto Spagnolini,et al.  Shift invariance algorithms for the angle/delay estimation of multipath space-time channel , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[10]  S Lanzisera,et al.  Radio Frequency Time-of-Flight Distance Measurement for Low-Cost Wireless Sensor Localization , 2011, IEEE Sensors Journal.

[11]  Gregory G. Raleigh,et al.  Joint space-time parameter estimation for wireless communication channels , 1998, IEEE Trans. Signal Process..

[12]  A. Harter,et al.  A distributed location system for the active office , 1994, IEEE Network.

[13]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[14]  Min Gao,et al.  FILA: Fine-grained indoor localization , 2012, 2012 Proceedings IEEE INFOCOM.

[15]  Sachin Katti,et al.  PinPoint: Localizing Interfering Radios , 2013, NSDI.

[16]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[17]  Arogyaswami Paulraj,et al.  Joint angle and delay estimation using shift-invariance properties , 1997, IEEE Signal Processing Letters.

[18]  Mani B. Srivastava,et al.  Dynamic fine-grained localization in Ad-Hoc networks of sensors , 2001, MobiCom '01.

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  Andy Hopper,et al.  A new location technique for the active office , 1997, IEEE Wirel. Commun..

[21]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[22]  A. Paulraj,et al.  Joint angle and delay estimation (JADE) for signals in multipath environments , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[23]  Venkata N. Padmanabhan,et al.  Centaur: locating devices in an office environment , 2012, Mobicom '12.

[24]  Swarun Kumar,et al.  LTE radio analytics made easy and accessible , 2014 .

[25]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3 '14.

[26]  Arogyaswami Paulraj,et al.  Estimation of multipath parameters in wireless communications , 1998, IEEE Trans. Signal Process..

[27]  Wen-Hsien Fang,et al.  TST-MUSIC for joint DOA-delay estimation , 2001, IEEE Trans. Signal Process..

[28]  David Wetherall,et al.  Tool release: gathering 802.11n traces with channel state information , 2011, CCRV.

[29]  Tom Minka,et al.  You are facing the Mona Lisa: spot localization using PHY layer information , 2012, MobiSys '12.

[30]  Jie Xiong,et al.  Synchronicity: pushing the envelope of fine-grained localization with distributed mimo , 2014, HotWireless@MobiCom.

[31]  Yunhao Liu,et al.  Locating in fingerprint space: wireless indoor localization with little human intervention , 2012, Mobicom '12.

[32]  Kyu-Han Kim,et al.  SAIL: single access point-based indoor localization , 2014, MobiSys.

[33]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[34]  Dina Katabi,et al.  SourceSync: a distributed wireless architecture for exploiting sender diversity , 2010, SIGCOMM '10.

[35]  Andy Hopper,et al.  Deploying and evaluating a location-aware system , 2005, MobiSys '05.

[36]  Romit Roy Choudhury,et al.  SurroundSense: mobile phone localization via ambience fingerprinting , 2009, MobiCom '09.

[37]  Jie Yang,et al.  Push the limit of WiFi based localization for smartphones , 2012, Mobicom '12.

[38]  Allen Y. Yang,et al.  CITRIC: A low-bandwidth wireless camera network platform , 2008, 2008 Second ACM/IEEE International Conference on Distributed Smart Cameras.

[39]  James Caffery,et al.  Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[40]  Leopoldo Angrisani,et al.  A New Measurement Method Based on Music Algorithm for Through-the-Wall Detection of Life Signs , 2013, IEEE Transactions on Instrumentation and Measurement.

[41]  T. Kailath,et al.  Performance Analysis of the Music Algorithm with Spatial Smoothing in the Presence of Coherent Sources , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.

[42]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[43]  Andrea M. Tonello,et al.  A Frequency-Domain LOS Angle-of-Arrival Estimation Approach in Multipath Channels , 2013, IEEE Transactions on Vehicular Technology.

[44]  Paul Congdon,et al.  Avoiding multipath to revive inbuilding WiFi localization , 2013, MobiSys '13.

[45]  Neil D. Lawrence,et al.  WiFi-SLAM Using Gaussian Process Latent Variable Models , 2007, IJCAI.

[46]  F. Barcelo-Arroyo,et al.  A ranging system with IEEE 802.11 data frames , 2007, 2007 IEEE Radio and Wireless Symposium.

[47]  Jiunn-Tsair Chen,et al.  Multichannel MLSE equalizer with parametric FIR channel identification , 1999 .

[48]  Andy Hopper,et al.  The Anatomy of a Context-Aware Application , 1999, Wirel. Networks.

[49]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[50]  V. Padmanabhan,et al.  Enhancements to the RADAR User Location and Tracking System , 2000 .

[51]  Moustafa Youssef,et al.  The Horus WLAN location determination system , 2005, MobiSys '05.

[52]  Moustafa Youssef,et al.  No need to war-drive: unsupervised indoor localization , 2012, MobiSys '12.

[53]  M. Omair Ahmad,et al.  Joint Space-Time Parameter Estimation for Underwater Communication Channels with Velocity Vector Sensor Arrays , 2012, IEEE Transactions on Wireless Communications.

[54]  Vincent Lenders,et al.  Filtering Noisy 802.11 Time-of-Flight Ranging Measurements From Commoditized WiFi Radios , 2014, IEEE/ACM Transactions on Networking.

[55]  Haiyun Luo,et al.  Zero-Configuration, Robust Indoor Localization: Theory and Experimentation , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[56]  Max Mühlhäuser,et al.  An IR local positioning system for smart items and devices , 2003, 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings..

[57]  Prabal Dutta,et al.  Luxapose: indoor positioning with mobile phones and visible light , 2014, MobiCom.

[58]  Lida Xu,et al.  The internet of things: a survey , 2014, Information Systems Frontiers.

[59]  David Cyganski,et al.  Transactional Array Reconciliation Tomography for Precision Indoor Location , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[60]  Stuart A. Golden,et al.  Sensor Measurements for Wi-Fi Location with Emphasis on Time-of-Arrival Ranging , 2007, IEEE Transactions on Mobile Computing.

[61]  David Cyganski,et al.  WPI Precision Personnel Location System: Rapid Deployment Antenna System and Sensor Fusion for 3D Precision Location , 2010 .

[62]  B. R. Badrinath,et al.  VOR base stations for indoor 802.11 positioning , 2004, MobiCom '04.

[63]  Swarun Kumar,et al.  Accurate indoor localization with zero start-up cost , 2014, MobiCom.

[64]  Luis E. Ortiz,et al.  WiGEM: a learning-based approach for indoor localization , 2011, CoNEXT '11.

[65]  Yong-Hua Song,et al.  Super-resolution TOA Estimation in OFDM Systems for Indoor Environments , 2007, 2007 IEEE International Conference on Networking, Sensing and Control.

[66]  Ross A. Knepper,et al.  RF-compass: robot object manipulation using RFIDs , 2013, MobiCom.

[67]  V. Erceg,et al.  TGn Channel Models , 2004 .

[68]  Yasutaka Ogawa,et al.  Superresolution techniques for time-domain measurements with a network analyzer , 1991 .

[69]  Mati Wax,et al.  Joint estimation of time delays and directions of arrival of multiple reflections of a known signal , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.