A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex

To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of neural activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes cortical activity from nearly 60,000 neurons collected from 6 visual areas, 4 layers, and 12 transgenic mouse lines from 221 adult mice, in response to a systematic set of visual stimuli. Using this dataset, we reveal functional differences across these dimensions and show that visual cortical responses are sparse but correlated. Surprisingly, responses to different stimuli are largely independent, e.g. whether a neuron responds to natural scenes provides no information about whether it responds to natural movies or to gratings. We show that these phenomena cannot be explained by standard local filter-based models, but are consistent with multi-layer hierarchical computation, as found in deeper layers of standard convolutional neural networks.

Christof Koch | Nicholas Cain | Lydia Ng | Stefan Mihalas | Lu Li | Derric Williams | Colin Farrell | Michael A. Buice | Ulf Knoblich | Daniela Witten | David Feng | R. Clay Reid | Jack Waters | Saskia E. J. de Vries | Peter Ledochowitsch | Marina Garrett | Chinh Dang | Shawn R. Olsen | David Sullivan | Leonard Kuan | Tom Keenan | Amy Bernard | Shiella Caldejon | Linzy Casal | Nathalie Gaudreault | Wayne Wakeman | Ali Williford | John W. Phillips | Saskia E. J. de Vries | Jerome Lecoq | Peter A Groblewski | Gabriel Koch Ocker | Michael Oliver | Daniel Millman | Kate Roll | Carol L. Thompson | Chris Barber | Nathan Berbesque | Brandon Blanchard | Nicholas Bowles | Andrew Cho | Sissy Cross | Tim A. Dolbeare | Melise Edwards | John Galbraith | Fiona Griffin | Perry Hargrave | Robert Howard | Lawrence Huang | Sean Jewell | Nika Keller | Josh Larkin | Rachael Larsen | Chris Lau | Eric Lee | Felix Lee | Arielle Leon | Fuhui Long | Jennifer A. Luviano | Kyla Mace | Thuyanh V. Nguyen | Jed Perkins | Miranda Robertson | Sam Seid | Eric Shea-Brown | Jianghong Shi | Nathan Sjoquist | Cliff Slaughterbeck | Ryan Valenza | Casey White | Jun Zhuang | Hongkui Zeng | Eric T. Shea-Brown | C. Koch | D. Witten | R. Reid | L. Ng | Nicholas Cain | Stefan Mihalas | C. Lau | C. Slaughterbeck | Wayne Wakeman | David Feng | Amy Bernard | Chinh Dang | Hongkui Zeng | Rachael Larsen | P. Groblewski | Fuhui Long | Tim Dolbeare | C. Thompson | M. Buice | U. Knoblich | Daniel J. Millman | J. Waters | P. Ledochowitsch | J. Lecoq | J. Zhuang | Robert E. Howard | Derric Williams | Jianghong Shi | J. Galbraith | S. Caldejon | Felix Lee | K. Roll | Nathan Sjoquist | Marina Garrett | Linzy Casal | Kyla Mace | A. Williford | Arielle Leon | Chris Barber | N. Gaudreault | Fiona Griffin | G. K. Ocker | M. Oliver | T. Keenan | Nathan Berbesque | B. Blanchard | N. Bowles | Andrew Cho | Sissy Cross | Mélise Edwards | P. Hargrave | Lawrence Huang | S. Jewell | Nika H. Keller | Josh D. Larkin | E. Lee | Lu Li | Jed Perkins | M. Robertson | Sam Seid | D. Sullivan | Ryan A. Valenza | Casey White | C. Farrell | Eric Shea-Brown | L. Kuan | Eric Lee | Brandon Blanchard | E. Shea-Brown | Jack Waters | Jun Zhuang

[1]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[2]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[3]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[4]  Demetris K. Roumis,et al.  Functional Specialization of Mouse Higher Visual Cortical Areas , 2011, Neuron.

[5]  M. Carandini,et al.  Integration of visual motion and locomotion in mouse visual cortex , 2013, Nature Neuroscience.

[6]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[7]  Joel Zylberberg Untuned But Not Irrelevant: A Role For Untuned Neurons In Sensory Information Coding , 2017 .

[8]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[9]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brain-wide activity , 2018, bioRxiv.

[10]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[11]  Brigitte Röder,et al.  Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices , 2017, eNeuro.

[12]  Maria C. Dadarlat,et al.  Locomotion enhances neural encoding of visual stimuli in mouse V1 , 2017 .

[13]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[14]  Alexander Borst,et al.  How does Nature Program Neuron Types? , 2008, Front. Neurosci..

[15]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[16]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[17]  Brian Zingg,et al.  Cross-Modality Sharpening of Visual Cortical Processing through Layer-1-Mediated Inhibition and Disinhibition , 2016, Neuron.

[18]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[19]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[20]  James H. Marshel,et al.  Functional Specialization of Seven Mouse Visual Cortical Areas , 2011, Neuron.

[21]  Claudia Clopath,et al.  Population coupling predicts the plasticity of stimulus responses in cortical circuits , 2018, bioRxiv.

[22]  Il Memming Park,et al.  Organization of Neural Population Code in Mouse Visual System , 2017 .

[23]  Andrew J. King,et al.  Measuring the Performance of Neural Models , 2016, Front. Comput. Neurosci..

[24]  Jonathan W. Pillow,et al.  Running reduces firing but improves coding in rodent higher-order visual cortex , 2017, bioRxiv.

[25]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[26]  Joel Zylberberg,et al.  Untuned but not irrelevant: The role of untuned neurons in sensory information coding , 2017, bioRxiv.

[27]  Alon Rubin,et al.  Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data , 2017, Cell reports.

[28]  Randall J. Ellis,et al.  High-accuracy Decoding of Complex Visual Scenes from Neuronal Calcium Responses , 2018, bioRxiv.

[29]  Yves Frégnac,et al.  Adaptation of the simple or complex nature of V1 receptive fields to visual statistics , 2011, Nature Neuroscience.

[30]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[31]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[32]  Yuan Zhao,et al.  Organization of Neural Population Code in Mouse Visual System , 2017, eNeuro.

[33]  Matthew T. Kaufman,et al.  Movement-related activity dominates cortex during sensory-guided decision making , 2018, bioRxiv.

[34]  Lydia Ng,et al.  The organization of intracortical connections by layer and cell class in the mouse brain , 2018, bioRxiv.

[35]  Jascha Sohl-Dickstein,et al.  SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability , 2017, NIPS.

[36]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[37]  Curtis L Baker,et al.  Natural versus Synthetic Stimuli for Estimating Receptive Field Models: A Comparison of Predictive Robustness , 2012, The Journal of Neuroscience.

[38]  Kenneth D. Harris,et al.  Vision and locomotion shape the interactions between neuron types in mouse visual cortex , 2016 .

[39]  Tom Tryon,et al.  The Other , 1971 .

[40]  Rava Azeredo da Silveira,et al.  Structures of Neural Correlation and How They Favor Coding , 2016, Neuron.

[41]  Maxwell H. Turner,et al.  Direction-Selective Circuits Shape Noise to Ensure a Precise Population Code , 2016, Neuron.

[42]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[43]  Ganna Palagina,et al.  Complex Visual Motion Representation in Mouse Area V1 , 2017, The Journal of Neuroscience.

[44]  Juan de Lara,et al.  Supporting user-oriented analysis for multi-view domain-specific visual languages , 2009, Inf. Softw. Technol..

[45]  R. Shapley,et al.  Stimulus ensemble and cortical layer determine V1 spatial receptive fields , 2009, Proceedings of the National Academy of Sciences.

[46]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[47]  David J. Field,et al.  What is the other 85% of V1 doing? , 2004 .

[48]  Jeffrey P. Gavornik,et al.  Higher brain functions served by the lowly rodent primary visual cortex , 2014, Learning & memory.

[49]  Bian Wu,et al.  Neuronal Activities in the Mouse Visual Cortex Predict Patterns of Sensory Stimuli , 2018, Neuroinformatics.

[50]  Robert Oostenveld,et al.  Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality , 2016, Front. Comput. Neurosci..

[51]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[52]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[53]  Paul R. Martin,et al.  The unsolved mystery of vision , 2007, Current Biology.

[54]  M. Carandini,et al.  Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex , 2016, Neuron.

[55]  David J. Field,et al.  What Is the Other 85 Percent of V1 Doing , 2006 .