Visual Pathways Serving Motion Detection in the Mammalian Brain

Motion perception is the process through which one gathers information on the dynamic visual world, in terms of the speed and movement direction of its elements. Motion sensation takes place from the retinal light sensitive elements, through the visual thalamus, the primary and higher visual cortices. In the present review we aim to focus on the extrageniculo-extrastriate cortical and subcortical visual structures of the feline and macaque brain and discuss their functional role in visual motion perception. Special attention is paid to the ascending tectofugal system that may serve for detection of the visual environment during self-motion.

[1]  C. Gross Contribution of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and inferior temporal cortex , 1991, Neuropsychologia.

[2]  Y C Diao,et al.  Response properties of PMLS and PLLS neurons to simulated optic flow patterns , 2000, The European journal of neuroscience.

[3]  Smith-Kettlewell,et al.  BIOLOGICAL IMAGE MOTION PROCESSING : A REVIEW , 2012 .

[4]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[5]  J Faubert,et al.  Simple and complex visual motion response properties in the anterior medial bank of the lateral suprasylvian cortex , 2004, Neuroscience.

[6]  Antal Berényi,et al.  Spatio-temporal visual properties in the ascending tectofugal system , 2010, Central European Journal of Biology.

[7]  C. Casanova,et al.  Global motion integration in the postero-medial part of the lateral suprasylvian cortex in the cat , 2006, Experimental Brain Research.

[8]  Bart G Borghuis,et al.  Temporal dynamics of direction tuning in motion-sensitive macaque area MT. , 2005, Journal of neurophysiology.

[9]  P. D. Spear,et al.  Are neurons in cat posteromedial lateral suprasylvian visual cortex orientation sensitive? Tests with bars and gratings , 1995, Visual Neuroscience.

[10]  O D Creutzfeldt,et al.  Anterior ectosylvian visual area (AEV) of the cat: physiological properties. , 1988, Progress in brain research.

[11]  D L Robinson,et al.  Functional contributions of the primate pulvinar. , 1993, Progress in brain research.

[12]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[13]  T. Hicks,et al.  Organization of cortical and subcortical projections to the feline insular visual area, IVA. , 1991, Journal fur Hirnforschung.

[14]  Kenneth H Britten,et al.  Area MST and heading perception in macaque monkeys. , 2002, Cerebral cortex.

[15]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  D. Burr,et al.  Spatial and temporal selectivity of the human motion detection system , 1985, Vision Research.

[17]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[18]  L. Mucke,et al.  Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat , 2004, Experimental Brain Research.

[19]  Robert J. Snowden,et al.  The visual perception of motion , 2004, Current Biology.

[20]  Bing Li,et al.  Pattern and component motion selectivity in cortical area PMLS of the cat , 2001, The European journal of neuroscience.

[21]  S. Scott,et al.  Cortical control of reaching movements , 1997, Current Opinion in Neurobiology.

[22]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[23]  D. M. Green,et al.  A panoramic code for sound location by cortical neurons. , 1994, Science.

[24]  G. Benedek,et al.  Organization of the colliculo‐suprageniculate pathway in the cat: A wheat germ agglutinin‐horseradish peroxidase study , 1995, The Journal of comparative neurology.

[25]  M L Braunstein,et al.  Sensitivity of the observer to transformations of the visual field. , 1966, Journal of experimental psychology.

[26]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[27]  G. Benedek,et al.  Physiological properties of visually responsive neurones in the insular cortex of the cat , 1986, Neuroscience Letters.

[28]  J. Rauschecker,et al.  Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  S G Lomber,et al.  Reversible visual hemineglect. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[31]  G. Rizzolatti,et al.  Visual receptive fields in the lateral suprasylvian area (Clare-Bishop area) of the cat , 1976, Brain Research.

[32]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[33]  L. Benevento,et al.  The organization of connections between the pulvinar and visual area MT in the macaque monkey , 1983, Brain Research.

[34]  Edward M. Callaway,et al.  Specialized Circuits from Primary Visual Cortex to V2 and Area MT , 2007, Neuron.

[35]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  B. C. Motter,et al.  The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  C. Cavada,et al.  Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal, parietal and temporal association cortices , 1995, Journal of Chemical Neuroanatomy.

[38]  D. Hubel,et al.  Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  J. Kaas,et al.  A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). , 1974, Brain research.

[40]  S G Lomber,et al.  Behavioral cartography of visual functions in cat parietal cortex: areal and laminar dissociations. , 2001, Progress in brain research.

[41]  J. Movshon,et al.  Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. , 1990, Journal of neurophysiology.

[42]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[43]  Manuel Suero,et al.  Motion of complex patterns is computed from the perceived motions of their components , 1991, Vision Research.

[44]  Michael W. von Grünau,et al.  Visual receptive field properties in the posterior suprasylvian cortex of the cat: A comparison between the areas PMLS and PLLS , 1987, Vision Research.

[45]  E. L. Keller,et al.  Visual signals in the dorsolateral pontine nucleus of the alert monkey: Their relationship to smooth-pursuit eye movements , 2004, Experimental Brain Research.

[46]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[47]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[48]  M. Ptito,et al.  Intracortical connections of the anterior ectosylvian and lateral suprasylvian visual areas in the cat , 1985, Brain Research.

[49]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[50]  Spatz Wb Unipolar brush cells in marmoset cerebellum and cochlear nuclei express calbindin. , 2000 .

[51]  John H. R. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[52]  D. Ellemberg,et al.  Receptive field properties and sensitivity to edges defined by motion in the postero-lateral lateral suprasylvian (PLLS) area of the cat , 2008, Brain Research.

[53]  Laurence R. Harris,et al.  Temporal and spatial response characteristics of the cat superior colliculus , 1981, Brain Research.

[54]  H Sherk,et al.  Neuronal responses in extrastriate cortex to objects in optic flow fields , 1997, Visual Neuroscience.

[55]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[56]  Giovanni Berlucchi,et al.  Considerable deficits in the detection performance of the cat after lesion of the suprasylvian visual cortex , 2004, Experimental Brain Research.

[57]  A. Rosenquist,et al.  Corticocortical connections among visual areas in the cat , 1984, The Journal of comparative neurology.

[58]  W M COWAN,et al.  A bilateral cortico-striate projection , 1965, Journal of neurology, neurosurgery, and psychiatry.

[59]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[60]  Y. Katoh,et al.  Bilateral projections from the superior colliculus to the suprageniculate nucleus in the cat: A WGA-HRP/double fluorescent tracing study , 1995, Brain Research.

[61]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[62]  B E Stein,et al.  Small lateral suprasylvian cortex lesions produce visual neglect and decreased visual activity in the superior colliculus , 1988, The Journal of comparative neurology.

[63]  E. Yund,et al.  Responses of striate cortex cells to grating and checkerboard patterns. , 1979, The Journal of physiology.

[64]  S. Treue,et al.  Attentional Modulation Strength in Cortical Area MT Depends on Stimulus Contrast , 2002, Neuron.

[65]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[66]  K. Mizobe,et al.  Neuronal responsiveness in areas 19 and 21a, and the posteromedial lateral suprasylvian cortex of the cat , 2004, Experimental Brain Research.

[67]  Geoffrey M Boynton,et al.  The Representation of Behavioral Choice for Motion in Human Visual Cortex , 2007, The Journal of Neuroscience.

[68]  D. Snodderly,et al.  Direction selectivity in V1 of alert monkeys: evidence for parallel pathways for motion processing , 2007, The Journal of physiology.

[69]  G Curio,et al.  Spatially selective visual attention and generation of eye pursuit movements. Experiments with sigma-movement. , 1982, Human neurobiology.

[70]  H Sherk,et al.  Simulated optic flow and extrastriate cortex. I. Optic flow versus texture. , 1997, Journal of neurophysiology.

[71]  Takashi Hamada,et al.  Neural response to the motion of textures in the lateral suprasylvian area of cats , 1987, Behavioural Brain Research.

[72]  B E Stein,et al.  Two visual corticotectal systems in cat. , 1984, Journal of neurophysiology.

[73]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[74]  C. Rashbass,et al.  The relationship between saccadic and smooth tracking eye movements , 1961, The Journal of physiology.

[75]  C Blakemore,et al.  Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. , 1987, The Journal of physiology.

[76]  C R Olson,et al.  An outlying visual area in the cerebral cortex of the cat. , 1983, Progress in brain research.

[77]  W. Burke,et al.  Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. , 1996, Cerebral cortex.

[78]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  Helen Sherk,et al.  Lesions of extrastriate cortex and consequences for visual guidance during locomotion , 2002, Experimental Brain Research.

[80]  A. Rosenquist,et al.  Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  C. Olson,et al.  Ectosylvian visual area of the cat: Location, retinotopic organization, and connections , 1987, The Journal of comparative neurology.

[82]  S. Zeki,et al.  Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. , 1971, Brain research.

[83]  B. J. Frost,et al.  Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area , 2004, Experimental Brain Research.

[84]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[85]  S Zeki,et al.  Going beyond the information given: the relation of illusory visual motion to brain activity , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[86]  L. Palmer,et al.  The retinotopic organization of lateral suprasylvian visual areas in the cat , 1978, The Journal of comparative neurology.

[87]  G Benedek,et al.  Coding of spatial co‐ordinates on neurones of the feline visual association cortex , 2000, Neuroreport.

[88]  D. A. Suzuki,et al.  Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. , 1981, Journal of neurophysiology.

[89]  T. Hicks,et al.  The visual insular cortex of the cat: organization, properties and modality specificity. , 1988, Progress in brain research.

[90]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  M. Sommer,et al.  Frontal Eye Field Neurons with Spatial Representations Predicted by Their Subcortical Input , 2009, The Journal of Neuroscience.

[92]  A. Rosenquist,et al.  Laminar origins of visual corticocortical connections in the cat , 1984, The Journal of comparative neurology.

[93]  C. Casanova,et al.  Functional sub-regions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat. , 2001, Cerebral cortex.

[94]  P. D. Spear,et al.  Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. , 1975, Journal of neurophysiology.

[95]  C Blakemore,et al.  Development of spatial and temporal selectivity in the suprasylvian visual cortex of the cat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  F. Reinoso-suárez,et al.  Topographical organization of the cortical afferent connections to the cortex of the anterior ectosylvian sulcus in the cat , 2004, Experimental Brain Research.

[97]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[98]  T. Yin,et al.  Visuomotor interactions in responses of neurons in the middle and lateral suprasylvian cortices of the behaving cat , 2005, Experimental Brain Research.

[99]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[100]  J. Simpson The accessory optic system. , 1984, Annual review of neuroscience.

[101]  G. Rizzolatti,et al.  Parietal cortex: from sight to action , 1997, Current Opinion in Neurobiology.

[102]  S. Treue Neural correlates of attention in primate visual cortex , 2001, Trends in Neurosciences.

[103]  A. Cowey,et al.  Regional cerebral correlates of global motion perception: evidence from unilateral cerebral brain damage. , 2001, Brain : a journal of neurology.

[104]  R. Andersen,et al.  Neural Mechanisms of Visual Motion Perception in Primates , 1997, Neuron.

[105]  O E Favreau,et al.  Perceived velocity of moving chromatic gratings. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[106]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[107]  J Atkinson,et al.  Acuity, contrast sensitivity and accommodation in infants , 1981 .

[108]  D. Robinson,et al.  Chapter 31 Functional contributions of the primate pulvinar , 1993 .

[109]  R. Andersen,et al.  Encoding of three-dimensional structure-from-motion by primate area MT neurons , 1998, Nature.

[110]  L. Palmer,et al.  The retinotopic organization of area 17 (striate cortex) in the cat , 1978, The Journal of comparative neurology.

[111]  S. Guirado,et al.  The ascending tectofugal visual system in amniotes: New insights , 2005, Brain Research Bulletin.

[112]  R. Wurtz,et al.  Response to motion in extrastriate area MSTl: center-surround interactions. , 1998, Journal of neurophysiology.

[113]  T D Albright,et al.  Visual motion perception. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[114]  C. Blakemore,et al.  Visual motion processing in the anterior ectosylvian sulcus of the cat. , 1996, Journal of neurophysiology.

[115]  Alexander Grunewald,et al.  Neural Correlates of Structure-from-Motion Perception in Macaque V1 and MT , 2002, The Journal of Neuroscience.

[116]  J I Simpson,et al.  The Accessory Optic System Analyzer of Self‐Motion a , 1988, Annals of the New York Academy of Sciences.

[117]  G A Orban,et al.  Orientation discrimination in the cat: Its cortical locus II. Extrastriate cortical areas , 1996, The Journal of comparative neurology.

[118]  D. V. van Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979, Annual review of neuroscience.

[119]  W. Fries The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[120]  S Shipp,et al.  Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: A physioligical and connectional study , 1991, Visual Neuroscience.

[121]  T Pasternak,et al.  Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. , 1996, Cerebral cortex.

[122]  H. Sherk Location and connections of visual cortical areas in the cat's suprasylvian sulcus , 1986, The Journal of comparative neurology.

[123]  O. D. Creutzfeldt,et al.  Connections of the anterior ectosylvian visual area (AEV) , 2004, Experimental Brain Research.

[124]  John H. R. Maunsell,et al.  Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat , 1989, Visual Neuroscience.

[125]  Hubert R. Dinse,et al.  The role of the lateral suprasylvian visual cortex of the cat in object-background interactions: Permanent deficits following lesions , 2004, Experimental Brain Research.

[126]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  Leslie Welch,et al.  The perception of moving plaids reveals two motion-processing stages , 1989, Nature.

[128]  G. Kovács,et al.  Visual, somatosensory, auditory and nociceptive modality properties in the feline suprageniculate nucleus , 1997, Neuroscience.

[129]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[130]  W. Newsome,et al.  Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[131]  D. Burr,et al.  Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. , 1986, Journal of neurophysiology.

[132]  C. Cusick,et al.  Area V1 in macaque monkeys projects to multiple histochemically defined subdivisions of the inferior pulvinar complex , 1997, Brain Research.

[133]  G. Benedek,et al.  Overlap of nigrothalamic terminals and thalamostriatal neurons in the feline lateralis medialis-suprageniculate nucleus. , 2009, Acta physiologica Hungarica.

[134]  J. Atkinson Development of optokinetic nystagmus in the human infant and monkey infant , 1979 .

[135]  R. Arai,et al.  Bifurcating projections from the cerebellar fastigial neurons to the thalamic suprageniculate nucleus and to the superior colliculus , 2000, Brain Research.

[136]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[137]  M. Yukie,et al.  Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys , 1981, The Journal of comparative neurology.

[138]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[139]  J A Movshon,et al.  Spatial and temporal analysis by neurons in the representation of the central visual field in the cat's lateral suprasylvian visual cortex , 1990, Visual Neuroscience.

[140]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[141]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[142]  J. Kaas,et al.  Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? , 1999, The European journal of neuroscience.

[143]  B. Stein,et al.  The Merging of the Senses , 1993 .

[144]  W. Singer,et al.  A Metabolic Mapping Study of Orientation Discrimination and Detection Tasks in the Cat , 1997, The European journal of neuroscience.

[145]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[146]  Thomas D Albright,et al.  Seeing the Big Picture Integration of Image Cues in the Primate Visual System , 1999, Neuron.

[147]  H-J Heinze,et al.  Unmasking Motion-Processing Activity in Human Brain Area V5/MT+ Mediated by Pathways That Bypass Primary Visual Cortex , 2002, NeuroImage.

[148]  Lennart Heimer,et al.  Simultaneous demonstration of horseradish peroxidase and acetylcholinesterase , 1976, Neuroscience Letters.

[149]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[150]  K. Grieve,et al.  The primate pulvinar nuclei: vision and action , 2000, Trends in Neurosciences.

[151]  Antal Berényi,et al.  Direct synaptic connections between superior colliculus afferents and thalamo-insular projection neurons in the feline suprageniculate nucleus: A double-labeling study with WGA-HRP and kainic acid , 2010, Neuroscience Research.

[152]  David C. Burr,et al.  Local and global visual processing , 1986, Vision Research.

[153]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[154]  C Casanova,et al.  Spatial frequency processing in posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat's lateral posterior-pulvinar complex , 1998, Neuroscience.

[155]  T. Hicks,et al.  Organization and properties of neurons in a visual area within the insular cortex of the cat. , 1988, Journal of neurophysiology.

[156]  D. Burr,et al.  Contrast sensitivity at high velocities , 1982, Vision Research.

[157]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[158]  Leo L. Lui,et al.  Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus) , 2007, The European journal of neuroscience.

[159]  A. Simeone,et al.  The TINS Lecture Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis , 1999, Trends in Neurosciences.

[160]  Stefan Treue,et al.  Combining spatial and feature-based attention within the receptive field of MT neurons , 2009, Vision Research.

[161]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[162]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[163]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[164]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.