Optimization Over the Boolean Hypercube Via Sums of Nonnegative Circuit Polynomials

Various key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems are based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate the analysis of optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS based certificates remain valid: First, for polynomials, which are nonnegative over the $n$-variate boolean hypercube with constraints of degree $d$ there exists a SONC certificate of degree at most $n+d$. Second, if there exists a degree $d$ SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree $d$ SONC certificate, that includes at most $n^{O(d)}$ nonnegative circuit polynomials.

[1]  Adam Kurpisz,et al.  On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy , 2015, Math. Oper. Res..

[2]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[3]  Pravesh Kothari,et al.  A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[4]  Avi Wigderson,et al.  Sum-of-squares Lower Bounds for Planted Clique , 2015, STOC.

[5]  Ryan O'Donnell,et al.  Sum of squares lower bounds for refuting any CSP , 2017, STOC.

[6]  Timo de Wolff,et al.  A Positivstellensatz for Sums of Nonnegative Circuit Polynomials , 2016, SIAM J. Appl. Algebra Geom..

[7]  Tselil Schramm,et al.  Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors , 2015, STOC.

[8]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[9]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[10]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[11]  Avner Magen,et al.  Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy , 2009, APPROX-RANDOM.

[12]  Venkatesan Guruswami,et al.  MaxMin allocation via degree lower-bounded arborescences , 2009, STOC '09.

[13]  Ryan O'Donnell,et al.  SOS Is Not Obviously Automatizable, Even Approximately , 2016, ITCS.

[14]  Prasad Raghavendra,et al.  On the Bit Complexity of Sum-of-Squares Proofs , 2017, ICALP.

[15]  Dima Grigoriev,et al.  Complexity of Null-and Positivstellensatz proofs , 2001, Ann. Pure Appl. Log..

[16]  David Steurer,et al.  Exact tensor completion with sum-of-squares , 2017, COLT.

[17]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[18]  Stanislav Zivny,et al.  The limits of SDP relaxations for general-valued CSPs , 2016, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[19]  Eden Chlamtác,et al.  Approximation Algorithms Using Hierarchies of Semidefinite Programming Relaxations , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[20]  G. Ziegler Lectures on Polytopes , 1994 .

[21]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[22]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[23]  David Steurer,et al.  Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method , 2014, STOC.

[24]  Sanjeev Arora,et al.  Subexponential Algorithms for Unique Games and Related Problems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[25]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[26]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[27]  Dima Grigoriev,et al.  Complexity of Semi-algebraic Proofs , 2002, STACS.

[28]  Monaldo Mastrolilli High Degree Sum of Squares Proofs, Bienstock-Zuckerberg Hierarchy and CG Cuts , 2017, IPCO.

[29]  Parikshit Shah,et al.  Relative entropy optimization and its applications , 2017, Math. Program..

[30]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[31]  Pravesh Kothari,et al.  Robust moment estimation and improved clustering via sum of squares , 2018, STOC.

[32]  Timo de Wolff,et al.  Amoebas, nonnegative polynomials and sums of squares supported on circuits , 2014, 1402.0462.

[33]  Grigoriy Blekherman There are significantly more nonegative polynomials than sums of squares , 2003, math/0309130.

[34]  Dima Grigoriev,et al.  Complexity of Positivstellensatz proofs for the knapsack , 2002, computational complexity.

[35]  Prasad Raghavendra,et al.  Approximating CSPs with global cardinality constraints using SDP hierarchies , 2011, SODA.

[36]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[37]  Adam Kurpisz,et al.  Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations , 2016, IPCO.

[38]  Adam Kurpisz,et al.  An unbounded Sum-of-Squares hierarchy integrality gap for a polynomially solvable problem , 2017, Math. Program..

[39]  Adam Kurpisz,et al.  On the Hardest Problem Formulations for the 0/1 0 / 1 Lasserre Hierarchy , 2015, ICALP.

[40]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[41]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[42]  Gyanit Singh,et al.  Improved Approximation Guarantees through Higher Levels of SDP Hierarchies , 2008, APPROX-RANDOM.

[43]  Fabrizio Grandoni,et al.  How to Sell Hyperedges: The Hypermatching Assignment Problem , 2013, SODA.

[44]  Tselil Schramm,et al.  Fast and robust tensor decomposition with applications to dictionary learning , 2017, COLT.

[45]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[46]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[47]  Venkatesan Guruswami,et al.  Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Graph Partitioning and Quadratic Integer Programming with PSD Objectives , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[48]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[49]  Ankur Moitra,et al.  Noisy tensor completion via the sum-of-squares hierarchy , 2015, Mathematical Programming.

[50]  B. Reznick Forms derived from the arithmetic-geometric inequality , 1989 .

[51]  Wenceslas Fernandez de la Vega,et al.  Linear programming relaxations of maxcut , 2007, SODA '07.

[52]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[53]  Kevin K. H. Cheung Computation of the Lasserre Ranks of Some Polytopes , 2007, Math. Oper. Res..

[54]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[55]  Y. Nesterov Global quadratic optimization via conic relaxation , 1998 .

[56]  Monique Laurent,et al.  Lower Bound for the Number of Iterations in Semidefinite Hierarchies for the Cut Polytope , 2003, Math. Oper. Res..

[57]  Prasad Raghavendra,et al.  Rounding Semidefinite Programming Hierarchies via Global Correlation , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.