Receptive-field dynamics in the central visual pathways

[1]  D. Kleinfeld,et al.  On temporal codes and the spatiotemporal response of neurons in the lateral geniculate nucleus. , 1994, Journal of neurophysiology.

[2]  A. Leventhal,et al.  Direction-sensitive X and Y cells within the A laminae of the cat's LGNd , 1994, Visual Neuroscience.

[3]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[4]  D. Pollen,et al.  Space-time spectra of complex cell filters in the macaque monkey: A comparison of results obtained with pseudowhite noise and grating stimuli , 1994, Visual Neuroscience.

[5]  L. Palmer,et al.  Organization of simple cell responses in the three-dimensional (3-D) frequency domain , 1994, Visual Neuroscience.

[6]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[7]  I. Ohzawa,et al.  Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex. , 1994, Journal of neurophysiology.

[8]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[9]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[10]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[11]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[12]  Lowell D. Jacobson,et al.  Structural testing of multi-input linear—nonlinear cascade models for cells in macaque striate cortex , 1993, Vision Research.

[13]  A. L. Humphrey,et al.  Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. , 1992, Journal of neurophysiology.

[14]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[15]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[16]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[17]  R. B. Pinter,et al.  Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks , 1992 .

[18]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[19]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[20]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[21]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  L. Palmer,et al.  The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells , 1990, Vision Research.

[23]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[24]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[25]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[26]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[27]  A. L. Humphrey,et al.  Functionally distinct groups of X‐cells in the lateral geniculate nucleus of the cat , 1988, The Journal of comparative neurology.

[28]  C. Koch,et al.  Neuronal connections underlying orientation selectivity in cat visual cortex , 1987, Trends in Neurosciences.

[29]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[30]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[31]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. , 1987, Journal of neurophysiology.

[32]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[33]  C. Baker,et al.  Spatial receptive-field properties of direction-selective neurons in cat striate cortex. , 1986, Journal of neurophysiology.

[34]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[35]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[36]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[37]  P. Heggelund Direction asymmetry by moving stimuli and static receptive field plots for simple cells in cat striate cortex , 1984, Vision Research.

[38]  M. C. Citron,et al.  White noise analysis of cortical directional selectivity in cat , 1983, Brain Research.

[39]  R. D. Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982 .

[40]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[41]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[42]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[43]  Vasilis Z. Marmarelis,et al.  Analysis of Physiological Systems , 1978, Computers in Biology and Medicine.

[44]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[45]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[46]  G L Gerstein,et al.  Spatiotemporal organization of cat lateral geniculate receptive fields. , 1976, Journal of neurophysiology.

[47]  J. Movshon The velocity tuning of single units in cat striate cortex. , 1975, The Journal of physiology.

[48]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[49]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[50]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[51]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.