Assessing Correlations of Perovskite Catalytic Performance with Electronic Structure Descriptors

Electronic structure descriptors are computationally efficient quantities used to construct qualitative correlations for a variety of properties. In particular, the oxygen p-band center has been used to guide material discovery and fundamental understanding of an array of perovskite compounds for use in catalyzing the oxygen reduction and evolution reactions. However, an assessment of the effectiveness of the oxygen p-band center at predicting key measures of perovskite catalytic activity has not been made and would be highly beneficial to guide future predictions and codify best practices. Here, we have used density functional theory at the Perdew–Burke–Ernzerhof (PBE), PBEsol, PBE + U, strongly constrained and appropriately normed functional, and Heyd–Scuseria–Ernzerhof (HSE06) levels to assess the correlations of numerous measures of catalytic performance for a series of technologically relevant perovskite oxides, using the bulk oxygen p-band center as an electronic structure descriptor. We have analyz...

[1]  Joseph H. Montoya,et al.  Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO3 oxides. , 2018, Physical chemistry chemical physics : PCCP.

[2]  D. Morgan,et al.  Material Discovery and Design Principles for Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells , 2018, 1801.06109.

[3]  Reshma R. Rao,et al.  Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution , 2017 .

[4]  D. Morgan,et al.  Stretching Epitaxial La0.6Sr0.4CoO3−δ for Fast Oxygen Reduction , 2017, 1712.05869.

[5]  A. Grimaud,et al.  Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides , 2017 .

[6]  D. Morgan,et al.  High-throughput computational screening for low work function perovskite electron emitters , 2017, International Vacuum Electronics Conference.

[7]  Yang Shao-Horn,et al.  Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. , 2017, Nature chemistry.

[8]  D. Morgan,et al.  Factors controlling oxygen migration barriers in perovskites , 2016, 1609.03456.

[9]  Jianwei Sun,et al.  Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. , 2016, Nature chemistry.

[10]  D. Morgan,et al.  Understanding and Controlling the Work Function of Perovskite Oxides Using Density Functional Theory , 2016, 1607.02121.

[11]  D. Morgan,et al.  Oxygen Point Defect Chemistry in Ruddlesden-Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu). , 2016, The journal of physical chemistry letters.

[12]  G. Ceder,et al.  Energetics of MnO 2 polymorphs in density functional theory , 2016 .

[13]  D. Morgan,et al.  Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden-Popper Phases and Correlations to First-Principles Descriptors. , 2015, The journal of physical chemistry letters.

[14]  A. Vojvodić,et al.  Screened Hybrid Exact Exchange Correction Scheme for Adsorption Energies on Perovskite Oxides , 2015 .

[15]  D. Morgan,et al.  Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO₃ (B = Cr, Mn, Fe, Co and Ni). , 2015, Physical chemistry chemical physics : PCCP.

[16]  Yang Shao-Horn,et al.  Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis , 2015 .

[17]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[18]  Y. Shao-horn,et al.  Probing LaMO3 Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy , 2015 .

[19]  F. Calle‐Vallejo,et al.  Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides , 2015 .

[20]  C. Franchini Hybrid functionals applied to perovskites , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  J. Goodenough,et al.  Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K-edge X-ray Absorption Spectroscopy , 2014 .

[22]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[23]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[24]  John R. Kitchin,et al.  Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides , 2013 .

[25]  Hai-Ping Cheng,et al.  Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3 , 2012, 1210.1554.

[26]  C. Franchini,et al.  Screened hybrid functional applied to 3d0→3d8transition-metal perovskites LaMO3(M = Sc–Cu): Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties , 2012, 1209.0486.

[27]  Anubhav Jain,et al.  Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability , 2012 .

[28]  D. Morgan,et al.  Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells , 2012 .

[29]  Vladan Stevanović,et al.  Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation:Fitted elemental-phase Reference Energies (FERE) , 2012 .

[30]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[31]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[32]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[33]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[34]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[35]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[36]  G. Scuseria,et al.  Accurate treatment of solids with the HSE screened hybrid , 2011 .

[37]  W. Goddard,et al.  Accurate Band Gaps for Semiconductors from Density Functional Theory , 2011 .

[38]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[39]  J. Kilner,et al.  Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3 − δ , 2010 .

[40]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[41]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[42]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[43]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[44]  J. Nørskov,et al.  Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. , 2008, Angewandte Chemie.

[45]  G. Scuseria,et al.  Generalized gradient approximation for solids and their surfaces , 2007, 0707.2088.

[46]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[47]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[48]  Jens K Nørskov,et al.  Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. , 2006, Angewandte Chemie.

[49]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[50]  G. Ceder,et al.  THE LI INTERCALATION POTENTIAL OF LIMPO4 AND LIMSIO4 OLIVINES WITH M = FE, MN, CO, NI , 2004, cond-mat/0506111.

[51]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[52]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[53]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[54]  J. G. Chen,et al.  Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. , 2004, The Journal of chemical physics.

[55]  S. Haile Fuel cell materials and components , 2003 .

[56]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[57]  Stephen J. Skinner,et al.  Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes , 2001 .

[58]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[59]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange , 1999 .

[60]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[61]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[62]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[63]  J. Nørskov,et al.  Surface electronic structure and reactivity of transition and noble metals , 1997 .

[64]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[65]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[66]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[67]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[68]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[69]  J. Nørskov,et al.  Oxygen chemisorption on metal surfaces: General trends for Cu, Ni and Ag , 1993 .

[70]  Sawatzky,et al.  Nonlocal screening effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds. , 1993, Physical review letters.

[71]  B. Steele,et al.  Oxygen transport in selected nonstoichiometric perovskite-structure oxides , 1992 .

[72]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[73]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[74]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .