3D Object Categorization in Cluttered Scene Using Deep Belief Network Architectures

3D object classification in cluttered scenes is a critical area of computer vision and robotic research for autonomous robots to act in their surrounding area. In this chapter, we extend our previous work [51] by classifying 3D object categories in real-world scenes. We extract geometric features from 3D point clouds using a 3D global descriptor called Viewpoint Feature Histogram (VFH) then we learn the extracted features with Deep Belief Networks (DBNs). Thereafter, we test the power of Discriminative and Generative DBN architectures (DDBN/GDBN) for object categorization. The experiments on Washington RGBD dataset demonstrate the robustness of discriminative architecture which outperforms state-of-the-art. Also, we evaluate the performance of our approach on the real-world objects that are segmented from cluttered indoor scenes.

[1]  Ajmal S. Mian,et al.  Convolutional hypercube pyramid for accurate RGB-D object category and instance recognition , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Tai-hoon Kim,et al.  Use of Artificial Neural Network in Pattern Recognition , 2010 .

[3]  Ruslan Salakhutdinov,et al.  Learning Deep Generative Models , 2009 .

[4]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[5]  Tijmen Tieleman,et al.  Training restricted Boltzmann machines using approximations to the likelihood gradient , 2008, ICML '08.

[6]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[7]  Thomas Serre,et al.  A quantitative theory of immediate visual recognition. , 2007, Progress in brain research.

[8]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[9]  Luís A. Alexandre 3D Object Recognition Using Convolutional Neural Networks with Transfer Learning Between Input Channels , 2014, IAS.

[10]  Y. LeCun,et al.  Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[11]  El-Houssine Bouyakhf,et al.  Generative vs. Discriminative Deep Belief Netwok for 3D Object Categorization , 2017, VISIGRAPP.

[12]  Eckehard Steinbach,et al.  Noise-Resistant Deep Learning for Object Classification in Three-Dimensional Point Clouds Using a Point Pair Descriptor , 2018, IEEE Robotics and Automation Letters.

[13]  Nico Blodow,et al.  Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Nicolas Chapados,et al.  Detonation Classification from Acoustic Signature with the Restricted Boltzmann Machine , 2022 .

[15]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[16]  Xiang Li,et al.  LightNet: A Lightweight 3D Convolutional Neural Network for Real-Time 3D Object Recognition , 2017, 3DOR@Eurographics.

[17]  Danica Kragic,et al.  Improving generalization for 3D object categorization with Global Structure Histograms , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  El-Houssine Bouyakhf,et al.  3D Object Categorization and Recognition based on Deep Belief Networks and Point Clouds , 2016, ICINCO.

[19]  El-Houssine Bouyakhf,et al.  Discriminative Deep Belief Network for Indoor Environment Classification Using Global Visual Features , 2017, Cognitive Computation.

[20]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Yan Liu,et al.  Discriminative deep belief networks for visual data classification , 2011, Pattern Recognit..

[22]  Ning An,et al.  A PCA–CCA network for RGB-D object recognition , 2018 .

[23]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[24]  Mohammad Mehdi Homayounpour,et al.  Deep Belief Network Training Improvement Using Elite Samples Minimizing Free Energy , 2015, Int. J. Pattern Recognit. Artif. Intell..

[25]  Hironobu Fujiyoshi,et al.  To Be Bernoulli or to Be Gaussian, for a Restricted Boltzmann Machine , 2014, 2014 22nd International Conference on Pattern Recognition.

[26]  José García Rodríguez,et al.  LonchaNet: A sliced-based CNN architecture for real-time 3D object recognition , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[27]  Li Deng,et al.  A tutorial survey of architectures, algorithms, and applications for deep learning , 2014, APSIPA Transactions on Signal and Information Processing.

[28]  Andreas Zell,et al.  Revisiting Deep Convolutional Neural Networks for RGB-D Based Object Recognition , 2016, ICANN.

[29]  Tapani Raiko,et al.  Gaussian-Bernoulli restricted Boltzmann machines and automatic feature extraction for noise robust missing data mask estimation , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  Wolfram Burgard,et al.  Multimodal deep learning for robust RGB-D object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Gary R. Bradski,et al.  Fast 3D recognition and pose using the Viewpoint Feature Histogram , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Andrew Y. Ng,et al.  Convolutional-Recursive Deep Learning for 3D Object Classification , 2012, NIPS.

[33]  Xiaolong Wang,et al.  Discriminative Deep Belief Networks for image classification , 2010, 2010 IEEE International Conference on Image Processing.

[34]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[35]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[36]  David G. Lowe,et al.  Local Naive Bayes Nearest Neighbor for image classification , 2011, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Yoshua Bengio,et al.  Classification using discriminative restricted Boltzmann machines , 2008, ICML '08.

[38]  Dieter Fox,et al.  Depth kernel descriptors for object recognition , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  James M. Keller,et al.  Histogram of Oriented Normal Vectors for Object Recognition with a Depth Sensor , 2012, ACCV.

[40]  Roland Siegwart,et al.  Unsupervised 3D Object Discovery and Categorization for Mobile Robots , 2011, ISRR.

[41]  Silvio Savarese,et al.  3D generic object categorization, localization and pose estimation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[42]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[43]  Christian Igel,et al.  Training restricted Boltzmann machines: An introduction , 2014, Pattern Recognit..

[44]  Andrea Fusiello,et al.  A Bag of Words Approach for 3D Object Categorization , 2009, MIRAGE.

[45]  Markus Vincze,et al.  Recurrent Convolutional Fusion for RGB-D Object Recognition , 2018, IEEE Robotics and Automation Letters.

[46]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[48]  Sven Behnke,et al.  RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[49]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.