Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems.

Serotonin and dopamine are major neuromodulators. Here, we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR). We found that inputs to DR and MR serotonin neurons are spatially shifted in the forebrain, and MR serotonin neurons receive inputs from more medial structures. Then, we compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons apart from the striatum, which preferentially targets dopamine neurons. Our results suggest three major input streams: a medial stream regulates MR serotonin neurons, an intermediate stream regulates DR serotonin and VTA dopamine neurons, and a lateral stream regulates SNc dopamine neurons. These results provide fundamental organizational principles of afferent control for serotonin and dopamine.

[1]  K. Doya,et al.  Activation of Dorsal Raphe Serotonin Neurons Underlies Waiting for Delayed Rewards , 2011, The Journal of Neuroscience.

[2]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[3]  J. Deakin,et al.  5-HT and mechanisms of defence , 1991, Journal of psychopharmacology.

[4]  T. Sharp,et al.  Neurochemical and anatomical identification of fast- and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo , 2003, Neuroscience.

[5]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.

[6]  P. Dayan,et al.  Opponency Revisited: Competition and Cooperation Between Dopamine and Serotonin , 2010, Neuropsychopharmacology.

[7]  Mark G. Baxter,et al.  The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses , 2009, Neuron.

[8]  B. Hoffer,et al.  Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus , 2006, Genesis.

[9]  Z. Mainen,et al.  Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. , 2009, Journal of neurophysiology.

[10]  A M Graybiel,et al.  Fiber connections of the basal ganglia. , 1979, Progress in brain research.

[11]  O. Lindvall,et al.  Projections from the ventral tegmental area and mesencephalic raphe to the dorsal raphe nucleus in the rat , 1988, Experimental Brain Research.

[12]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[13]  S. J. Shammah-Lagnado,et al.  Organization of ventral tegmental area projections to the ventral tegmental area–nigral complex in the rat , 2008, Neuroscience.

[14]  H. Groenewegen,et al.  Serotonergic and non-serotonergic projections from the interpeduncular nucleus to the ventral hippocampus in the rat , 1984, Neuroscience Letters.

[15]  K. Nakamura,et al.  Hypothalamic neuron involvement in integration of reward, aversion, and cue signals. , 1986, Journal of neurophysiology.

[16]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[17]  P. Soubrié Reconciling the role of central serotonin neurons in human and animal behavior , 1986, Behavioral and Brain Sciences.

[18]  Ronald M. Harper,et al.  Dorsal raphe neurons: depression of firing during sleep in cats , 1976, Brain Research.

[19]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[20]  Adi Mizrahi,et al.  Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output , 2013, Neuron.

[21]  L. Swanson Cerebral hemisphere regulation of motivated behavior 1 1 Published on the World Wide Web on 2 November 2000. , 2000, Brain Research.

[22]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[23]  René Hen,et al.  Targeted gene expression in dopamine and serotonin neurons of the mouse brain , 2005, Journal of Neuroscience Methods.

[24]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[25]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[26]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[27]  J. Oliveras,et al.  Single-unit recordings at dorsal raphe nucleus in the awake-anesthetized rat: spontaneous activity and responses to cutaneous innocuous and noxious stimulations , 1995, Pain.

[28]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[29]  S. Kapur,et al.  Serotonin-dopamine interaction and its relevance to schizophrenia. , 1996, The American journal of psychiatry.

[30]  B. Jacobs,et al.  Serotonin and motor activity , 1997, Current Opinion in Neurobiology.

[31]  S. Geisler,et al.  Afferents of the ventral tegmental area in the rat‐anatomical substratum for integrative functions , 2005, The Journal of comparative neurology.

[32]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[33]  S. Lammel,et al.  Reward and aversion in a heterogeneous midbrain dopamine system , 2014, Neuropharmacology.

[34]  C. Rampon,et al.  Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods , 1997, Neuroscience.

[35]  U. Spampinato,et al.  Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study , 1999, Neuroscience.

[36]  E. Esposito,et al.  Role of Serotonin in Central Dopamine Dysfunction , 2010, CNS neuroscience & therapeutics.

[37]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[38]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[39]  L. Wiklund,et al.  Afferents to the median raphe nucleus of the rat: Retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selectived-[3H]aspartate labelling of possible excitatory amino acid inputs , 1990, Neuroscience.

[40]  Viktor Varga,et al.  Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[42]  G Chouvet,et al.  Role and Origin of the GABAergic Innervation of Dorsal Raphe Serotonergic Neurons , 2000, The Journal of Neuroscience.

[43]  G. Paxinos,et al.  Comprar The Mouse Brain in Stereotaxic Coordinates, The coronal plates and diagrams Compact, 3rd Edition | Keith Franklin | 9780123742445 | Academic Press , 2008 .

[44]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[45]  M. Ungless,et al.  Phasic responses in dorsal raphe serotonin neurons to noxious stimuli , 2010, Neuroscience.

[46]  F. Fujiyama,et al.  Vesicular glutamate transporter 3‐expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei , 2010, The Journal of comparative neurology.

[47]  R. Vertes,et al.  Projections of the median raphe nucleus in the rat , 1999, The Journal of comparative neurology.

[48]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[49]  C. Lowry,et al.  Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits , 2011, Psychopharmacology.

[50]  P. Dayan,et al.  Serotonin Selectively Modulates Reward Value in Human Decision-Making , 2012, The Journal of Neuroscience.

[51]  M. Soiza-Reilly,et al.  Glutamatergic drive of the dorsal raphe nucleus , 2011, Journal of Chemical Neuroanatomy.

[52]  E. Azmitia,et al.  An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat , 1978, The Journal of comparative neurology.

[53]  B. Franke,et al.  Dissociable Effects of Dopamine and Serotonin on Reversal Learning , 2013, Neuron.

[54]  M. Marcinkiewicz,et al.  CNS connections with the median raphe nucleus: Retrograde tracing with WGA‐apoHRP‐gold complex in the rat , 1989, The Journal of comparative neurology.

[55]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[56]  J. A. Hobson,et al.  The time-course of dorsal raphe discharge, PGO waves, and muscle tone averaged across multiple sleep cycles , 1983, Brain Research.

[57]  R. Vertes,et al.  Efferent and afferent connections of the dorsal and median raphe nuclei in the rat , 2008 .

[58]  Anatol C. Kreitzer,et al.  Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons , 2013, Neuron.

[59]  G. Aghajanian,et al.  Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique , 1977, Brain Research.

[60]  Peter Dayan,et al.  Serotonin, Inhibition, and Negative Mood , 2007, PLoS Comput. Biol..

[61]  Josiah R. Boivin,et al.  A Causal Link Between Prediction Errors, Dopamine Neurons and Learning , 2013, Nature Neuroscience.

[62]  W. Nauta,et al.  Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat , 1986, The Journal of comparative neurology.

[63]  J. Glowinski,et al.  Increased utilization of dopamine in the nucleus accumbens but not in the cerebral cortex after dorsal raphe lesion in the rat , 1979, Neuroscience Letters.

[64]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[65]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[66]  Kae Nakamura,et al.  Reward-Dependent Modulation of Neuronal Activity in the Primate Dorsal Raphe Nucleus , 2008, The Journal of Neuroscience.

[67]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.