Emerging Memristor-Based Logic Circuit Design Approaches: A Review

This article is a comprehensive review of the state-of-theart of memristor-based logic circuit design concepts of the recent literature. Amongst all the identified circuit design approaches, those discussed here are all based on collective memristive dynamics and share a number of common characteristics which facilitate their comparison. The focus is on the evolution of the memristor-based logic circuit design strategies from the early proposed sequential stateful logic up to most recently published design schemes which support parallel processing of the applied input signals. The main operational properties of all the selected computational concepts are presented in an accessible manner, aiming to serve as an informative cornerstone for students and scientists who wish to get involved in emerging memristive logic circuit research and development.

[1]  Georgios Ch. Sirakoulis,et al.  Memristive Crossbar-Based Nonvolatile Memory , 2016 .

[2]  Said F. Al-Sarawi,et al.  An Analytical Approach for Memristive Nanoarchitectures , 2011, IEEE Transactions on Nanotechnology.

[3]  E. Lehtonen,et al.  Implication logic synthesis methods for memristors , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[4]  R. Waser,et al.  Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays , 2011, IEEE Electron Device Letters.

[5]  Chris Yakopcic,et al.  Memristor SPICE Modeling , 2012 .

[6]  Bertram E. Shi,et al.  The memristive grid outperforms the resistive grid for edge preserving smoothing , 2009, 2009 European Conference on Circuit Theory and Design.

[7]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[8]  Christofer Toumazou,et al.  Two centuries of memristors. , 2012, Nature materials.

[9]  Leon O. Chua,et al.  If it’s pinched it’s a memristor , 2014 .

[10]  Massimiliano Di Ventra,et al.  Self-organization and solution of shortest-path optimization problems with memristive networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Massimiliano Di Ventra,et al.  The parallel approach , 2013 .

[12]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[13]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[14]  G. De Micheli,et al.  Applications of Multi-Terminal Memristive Devices: A Review , 2013, IEEE Circuits and Systems Magazine.

[15]  J. Yang,et al.  State Dynamics and Modeling of Tantalum Oxide Memristors , 2013, IEEE Transactions on Electron Devices.

[16]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[17]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[18]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[19]  Georgios Ch. Sirakoulis,et al.  Boolean Logic Operations and Computing Circuits Based on Memristors , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  Mircea R. Stan,et al.  CMOS/nano co-design for crossbar-based molecular electronic systems , 2003 .

[21]  S. Kvatinsky,et al.  The Desired Memristor for Circuit Designers , 2013, IEEE Circuits and Systems Magazine.

[22]  S. Kvatinsky,et al.  MRL — Memristor Ratioed Logic , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[23]  Jeyavijayan Rajendran,et al.  Leveraging Memristive Systems in the Construction of Digital Logic Circuits , 2012, Proceedings of the IEEE.

[24]  Rui Zhang,et al.  Synthesis and optimization of threshold logic networks with application to nanotechnologies , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[25]  S. Bhunia,et al.  A Scalable Memory-Based Reconfigurable Computing Framework for Nanoscale Crossbar , 2012, IEEE Transactions on Nanotechnology.

[26]  Valeriu Beiu,et al.  VLSI implementations of threshold logic-a comprehensive survey , 2003, IEEE Trans. Neural Networks.

[27]  Georgios Ch. Sirakoulis,et al.  Memristor-based combinational circuits: A design methodology for encoders/decoders , 2014, Microelectron. J..

[28]  Fabrizio Bonani,et al.  Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states , 2014, Science Advances.

[29]  Georgios Ch. Sirakoulis,et al.  On the generalization of composite memristive network structures for computational analog/digital circuits and systems , 2014, Microelectron. J..

[30]  Leon O. Chua,et al.  Composite Behavior of Multiple Memristor Circuits , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Mika Laiho,et al.  Stateful implication logic with memristors , 2009, 2009 IEEE/ACM International Symposium on Nanoscale Architectures.

[32]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[33]  F. Corinto,et al.  Memristor Model Comparison , 2013, IEEE Circuits and Systems Magazine.

[34]  S. Ambrogio,et al.  Normally-off Logic Based on Resistive Switches—Part I: Logic Gates , 2015, IEEE Transactions on Electron Devices.

[35]  S. Menzel,et al.  Realization of Boolean Logic Functionality Using Redox‐Based Memristive Devices , 2015 .

[36]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[37]  D. B. Strukov,et al.  Programmable CMOS/Memristor Threshold Logic , 2013, IEEE Transactions on Nanotechnology.

[38]  G. C. Sirakoulis,et al.  A Novel Design and Modeling Paradigm for Memristor-Based Crossbar Circuits , 2012, IEEE Transactions on Nanotechnology.

[39]  Yuchao Yang,et al.  Building Neuromorphic Circuits with Memristive Devices , 2013, IEEE Circuits and Systems Magazine.

[40]  Yusuf Leblebici,et al.  A compact high-speed (31,5) parallel counter circuit based on capacitive threshold-logic gates , 1996 .

[41]  Massimiliano Di Ventra,et al.  Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements , 2010, Proceedings of the IEEE.

[42]  Uri C. Weiser,et al.  MAGIC—Memristor-Aided Logic , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[43]  S. Ha,et al.  Adaptive oxide electronics: A review , 2011 .

[44]  Y. Pershin,et al.  Solving mazes with memristors: a massively-parallel approach , 2011 .

[45]  Leon O. Chua,et al.  Brains Are Made of Memristors , 2014, IEEE Circuits and Systems Magazine.

[46]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[47]  U. Böttger,et al.  Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations , 2012, Nanotechnology.

[48]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[49]  Robert H. Wilkinson,et al.  A Method of Generating Functions of Several Variables Using Analog Diode Logic , 1963, IEEE Trans. Electron. Comput..

[50]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[51]  Uri C. Weiser,et al.  Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[52]  Sergei V. Kalinin,et al.  Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. , 2009, Nature materials.

[53]  Jussi H. Poikonen,et al.  A cellular computing architecture for parallel memristive stateful logic , 2014, Microelectron. J..

[54]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[55]  L. Chua Memristor-The missing circuit element , 1971 .

[56]  Georgios Ch. Sirakoulis,et al.  Employing threshold‐based behavior and network dynamics for the creation of memristive logic circuits and architectures , 2015 .

[57]  Jeyavijayan Rajendran,et al.  Memristor based programmable threshold logic array , 2010, 2010 IEEE/ACM International Symposium on Nanoscale Architectures.

[58]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[59]  Ligang Gao,et al.  High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm , 2011, Nanotechnology.

[60]  Hyunsang Hwang,et al.  Effect of Scaling $\hbox{WO}_{x}$-Based RRAMs on Their Resistive Switching Characteristics , 2011, IEEE Electron Device Letters.

[61]  Leon O. Chua,et al.  Three Fingerprints of Memristor , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.