Artificial Control of PUMA Robot Manipulator: A-Review of Fuzzy Inference Engine And Application to Classical Controller.

One of the most important challenges in the field of robotics is robot manipulators control withacceptable performance, because these systems are multi-input multi-output (MIMO), nonlinearand uncertainty. Presently, robot manipulators are used in different (unknown and/orunstructured) situation consequently caused to provide complicated systems, as a result strongmathematical theory are used in new control methodologies to design nonlinear robust controllerwith acceptable performance (e.g., minimum error, good trajectory, disturbance rejection).Classical and non-classical methods are two main categories of robot manipulators control,where the conventional (classical) control theory uses the classical method and the non-classicalcontrol theory (e.g., fuzzy logic, neural network, and neuro fuzzy) uses the artificial intelligencemethods. However both of conventional and artificial intelligence theories have applied effectivelyin many areas, but these methods also have some limitations. This paper is focused on review offuzzy logic controller and applied to PUMA robot manipulator.

[1]  Byung Kook Yoo,et al.  Adaptive control of robot manipulator using fuzzy compensator , 2000, IEEE Trans. Fuzzy Syst..

[2]  R. Decarlo,et al.  Variable structure control of nonlinear multivariable systems: a tutorial , 1988, Proc. IEEE.

[3]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[4]  Abdul Rahman Ramli,et al.  Design adaptive fuzzy robust controllers for robot manipulator , 2011 .

[5]  Rong-Jong Wai,et al.  Implementation of artificial intelligent control in single-link flexible robot arm , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[6]  Allon Guez,et al.  On the solution to the inverse kinematic problem , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Peng-Yung Woo,et al.  Fuzzy logic control of robot manipulator , 1993, Proceedings of IEEE International Conference on Control and Applications.

[8]  Peng-Yung Woo,et al.  An adaptive fuzzy sliding mode controller for robotic manipulators , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[9]  Richard P. Paul,et al.  A parallel solution to robot inverse kinematics , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[10]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[11]  Masayoshi Tomizuka,et al.  Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems , 1996, IEEE Trans. Autom. Control..

[12]  Jon Kieffer,et al.  A path following algorithm for manipulator inverse kinematics , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[13]  Andrew A. Goldenberg,et al.  Development of a systematic methodology of fuzzy logic modeling , 1998, IEEE Trans. Fuzzy Syst..

[14]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[15]  Hongye Su,et al.  Adaptive sliding mode-like fuzzy logic control for high order nonlinear systems , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[16]  Brian S. R. Armstrong,et al.  Dynamics for robot control: friction modeling and ensuring excitation during parameter identification , 1988 .

[17]  N. Pariz,et al.  Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control , 2006, 2006 IEEE Power Engineering Society General Meeting.

[18]  Wen-June Wang,et al.  Self-tuning sliding mode controller design for a class of nonlinear control systems , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[19]  H. Temeltas A fuzzy adaptation technique for sliding mode controllers , 1998, IEEE International Symposium on Industrial Electronics. Proceedings. ISIE'98 (Cat. No.98TH8357).

[20]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[21]  Farzin Piltan,et al.  Design of FPGA-based Sliding Mode Controller for Robot Manipulator. , 2011 .

[22]  Thomas R. Kurfess,et al.  Robotics And Automation Handbook , 2019 .

[23]  Okyay Kaynak,et al.  Neuro-sliding mode control of robotic manipulators , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[24]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[25]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[26]  Zdenko Kovacic,et al.  Fuzzy Controller Design: Theory and Applications , 2005 .

[27]  Farzin Piltan,et al.  Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC With Tunable Gain. , 2011 .

[28]  Derong Liu,et al.  Multi-Agent Based Adaptive Consensus Control for Multiple Manipulators with Kinematic Uncertainties , 2008, 2008 IEEE International Symposium on Intelligent Control.

[29]  Nabil Derbel,et al.  A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator , 2006, Int. J. Model. Identif. Control..

[30]  김병국,et al.  A Study on the Design of Self-tuning Sliding Mode Fuzzy Controller , 1994 .

[31]  Constantine H. Houpis,et al.  Linear Control System Analysis and Design with MATLAB , 2013 .

[32]  Y. T. Kim Independent Joint Adaptive Fuzzy Control of Robot Manipulator , 2005, Intell. Autom. Soft Comput..

[33]  Rong-Jong Wai,et al.  Intelligent optimal control of single-link flexible robot arm , 2004, IEEE Transactions on Industrial Electronics.

[34]  Fan-Tien Cheng,et al.  Study and resolution of singularities for a 6-DOF PUMA manipulator , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[35]  Farzin Piltan,et al.  Artificial Control of Nonlinear Second Order Systems Based on AFGSMC , 2011 .

[36]  Farzin Piltan,et al.  Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with Minimum Rule base. , 2011 .

[37]  O. Kaynak,et al.  Guest editorial special section on computationally intelligent methodologies and sliding-mode control , 2001 .

[38]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[39]  M. Rouhani,et al.  A novel neuro-based model reference adaptive control for a two link robot arm , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[40]  A. Vivas,et al.  Predictive functional control of a PUMA robot , 2005 .

[41]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[42]  Wen-Shyong Yu,et al.  Adaptive fuzzy sliding mode control for linear time-varying uncertain systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[43]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. I , 1990, IEEE Trans. Syst. Man Cybern..

[44]  Keding Zhao,et al.  An integral variable structure controller with fuzzy tuning design for electro-hydraulic driving Stewart platform , 2006, 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics.

[45]  Ahmad B. Rad,et al.  Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching , 2001, Fuzzy Sets Syst..

[46]  N. Olgac,et al.  A comparative study on simulations vs. experiments of SMCPE , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[47]  V. Utkin Variable structure systems with sliding modes , 1977 .

[48]  Sudeept Mohan,et al.  Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator Control , 2007 .

[49]  Leopoldo García Franquelo,et al.  Speed control of induction motors using a novel fuzzy sliding-mode structure , 2002, IEEE Trans. Fuzzy Syst..

[50]  Heinz Unbehauen,et al.  An adaptive fuzzy sliding-mode controller , 2001, IEEE Trans. Ind. Electron..

[51]  Li-Chen Fu,et al.  Nonlinear control of robot manipulators using adaptive fuzzy sliding mode control , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[52]  James E. Bernard,et al.  Control system design for robots used in simulating dynamic force and moment interaction in virtual reality applications , 1996 .

[53]  Hyun-Sik Ahn,et al.  Sliding mode-like fuzzy logic control with self-tuning the dead zone parameters , 2001, IEEE Trans. Fuzzy Syst..

[54]  Leonid M. Fridman,et al.  Analysis of Chattering in Systems With Second-Order Sliding Modes , 2007, IEEE Transactions on Automatic Control.

[55]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[56]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[57]  Chiang-Cheng Chiang,et al.  Observer-Based Adaptive Fuzzy Sliding Mode Control of Uncertain Multiple-Input Multiple-Output Nonlinear Systems , 2007, 2007 IEEE International Fuzzy Systems Conference.

[58]  Peter I. Corke,et al.  A search for consensus among model parameters reported for the PUMA 560 robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[59]  Mo Jamshidi,et al.  Soft computing for autonomous robotic systems , 2000 .

[60]  R. Palm,et al.  Sliding mode fuzzy control , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[61]  J. Zhou,et al.  Fuzzy control of robots , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[62]  William K. Veitschegger,et al.  Robot accuracy analysis based on kinematics , 1986, IEEE J. Robotics Autom..

[63]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. II , 1990, IEEE Trans. Syst. Man Cybern..

[64]  Qingsong Xu,et al.  Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator , 2010, IEEE Transactions on Control Systems Technology.

[65]  Chih-Min Lin,et al.  Adaptive fuzzy sliding-mode control for induction servomotor systems , 2004 .

[66]  Chin-Gook Lhee,et al.  Sliding-like fuzzy logic control with self-tuning the dead zone parameters , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[67]  Farzin Piltan,et al.  Design artificial robust control of second order system based on adaptive fuzzy gain scheduling , 2011 .

[68]  Abdul Rahman Ramli,et al.  A model-free robust sliding surface slope adjustment in sliding mode control for robot manipulator , 2011 .

[69]  Chih-Lyang Hwang,et al.  A fuzzy-model-based variable structure control for robot arms: theory and experiments , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[70]  Y.F. Wang,et al.  Robust adaptive fuzzy observer design in robot arms , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[71]  Duy Nguyen-Tuong,et al.  Computed torque control with nonparametric regression models , 2008, 2008 American Control Conference.

[72]  Ya-Chen Hsu,et al.  Fuzzy variable structure control for MIMO systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).