Sequential Methods for Probabilistic Design

This chapter studies sequential algorithms for control design of uncertain systems with probabilistic techniques. We introduce a unifying theoretical framework that encompasses most of the sequential algorithms for feasibility that appeared in the literature. In particular, under a convexity assumption in the design parameters, we develop stochastic approximation algorithms that return a so-called reliable design. The notions of probabilistic oracle and update rules are also formally introduced. Gradient algorithms and localization methods are discussed in detail.

[1]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[2]  Michel Verhaegen,et al.  An ellipsoid algorithm for probabilistic robust controller design , 2003, Syst. Control. Lett..

[3]  Valery A. Ugrinovskii,et al.  Randomized Algorithms for Robust Stability and Guaranteed Cost Control of Stochastic Jump Parameter Systems with Uncertain Switching Policies , 2005 .

[4]  Pravin M. Vaidya,et al.  A cutting plane algorithm for convex programming that uses analytic centers , 1995, Math. Program..

[5]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[6]  Fabrizio Dabbene,et al.  Recursive algorithms for inner ellipsoidal approximation of convex polytopes , 2003, Autom..

[7]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[8]  Giuseppe Carlo Calafiore,et al.  Stochastic algorithms for exact and approximate feasibility of robust LMIs , 2001, IEEE Trans. Autom. Control..

[9]  Er-Wei Bai,et al.  Bounded-error parameter estimation: Noise models and recursive algorithms , 1996, Autom..

[10]  F. Tuteur,et al.  The use of a quadratic performance index to design multivariable control systems , 1966 .

[11]  Roberto Tempo,et al.  Probabilistic design of LPV control systems , 2003, Autom..

[12]  Jean-Philippe Vial,et al.  Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method , 2002, Optim. Methods Softw..

[13]  Qian Wang,et al.  An Ellipsoid Algorithm for linear optimization with uncertain LMI constraints , 2012, 2012 American Control Conference (ACC).

[14]  Yasuaki Oishi,et al.  Polynomial-time algorithms for probabilistic solutions of parameter-dependent linear matrix inequalities , 2007, Autom..

[15]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[16]  Boris Polyak Gradient methods for solving equations and inequalities , 1964 .

[17]  Fabrizio Dabbene,et al.  A Randomized Cutting Plane Method with Probabilistic Geometric Convergence , 2010, SIAM J. Optim..

[18]  V. A. Yakubovich,et al.  The method of recursive aim inequalities in adaptive control theory , 1992 .

[19]  Yurii Nesterov,et al.  Complexity estimates of some cutting plane methods based on the analytic barrier , 1995, Math. Program..

[20]  Han-Fu Chen Stochastic approximation and its applications , 2002 .

[21]  John E. Mitchell,et al.  Polynomial Interior Point Cutting Plane Methods , 2003, Optim. Methods Softw..

[22]  William S. Levine,et al.  The Control Handbook , 2005 .

[23]  Yasumasa Fujisaki,et al.  Guaranteed cost regulator design: A probabilistic solution and a randomized algorithm , 2007, Autom..

[24]  Yasumasa Fujisaki,et al.  Sequential randomized algorithms for robust optimization , 2007, 2007 46th IEEE Conference on Decision and Control.

[25]  N. Z. Shor Cut-off method with space extension in convex programming problems , 1977, Cybernetics.

[26]  William S. Levine,et al.  Control system advanced methods , 2011 .

[27]  R. Tempo,et al.  Probabilistic robust design of LPV control systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[28]  Yurii Nesterov,et al.  Confidence level solutions for stochastic programming , 2000, Autom..

[29]  Y. Fujisaki,et al.  Probabilistic robust controller design: probable near minimax value and randomized algorithms , 2003 .

[30]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[31]  Giuseppe Carlo Calafiore,et al.  A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs , 2007, Autom..

[32]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[33]  G. Calafiore,et al.  Probabilistic and Randomized Methods for Design under Uncertainty , 2006 .

[34]  S. Kaczmarz Approximate solution of systems of linear equations , 1993 .

[35]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[36]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .