Set-membership identification and fault detection using a bayesian framework

This paper deals with the problem of set-membership identification and fault detection using a Bayesian framework. The paper presents how the set-membership model estimation problem can be reformulated from a Bayesian viewpoint in order to determine the feasible parameter set and, in a posterior fault detection stage, to check the consistency between data and the model. The paper shows that, assuming uniform distributed measurement noise and flat model prior probability distribution, the Bayesian approach leads to the same feasible parameter set than the set-membership strips technique and, additionally, can deal with models nonlinear in the parameters. The procedure and results are illustrated by means of the application to a quadruple tank process.

[1]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[2]  Luc Jaulin,et al.  Probabilistic Set-membership Approach for Robust Regression , 2010 .

[3]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[4]  Václav Peterka,et al.  Bayesian system identification , 1979, Autom..

[5]  Vicenç Puig,et al.  Robust fault detection using polytope-based set-membership consistency test , 2012 .

[6]  Graham C. Goodwin,et al.  Non-stationary stochastic embedding for transfer function estimation , 1999, Autom..

[7]  Brett Ninness,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..

[8]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[9]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[10]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[11]  Mario Milanese,et al.  Optimality, approximation, and complexity in set membership H∞ identification , 2002, IEEE Trans. Autom. Control..

[12]  Giuseppe Carlo Calafiore,et al.  Interval predictor models: Identification and reliability , 2009, Autom..

[13]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[14]  Vicenç Puig,et al.  Robust fault detection using zonotope‐based set‐membership consistency test , 2009 .

[15]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[16]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[17]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[18]  Vicenç Puig,et al.  Identification for passive robust fault detection using zonotope‐based set‐membership approaches , 2011 .

[19]  G. Goodwin,et al.  Rapprochement between bounded‐error and stochastic estimation theory , 1995 .

[20]  Mario Milanese,et al.  Hinfinity set membership identification: A survey , 2005, Autom..

[21]  Vasso Reppa,et al.  Fault detection and diagnosis based on parameter set estimation , 2011 .

[22]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[23]  Xiang Li,et al.  Probabilistically Constrained Linear Programs and Risk-Adjusted Controller Design , 2005, SIAM J. Optim..

[24]  Vicenç Puig,et al.  Nonlinear set-membership identification and fault detection using a Bayesian framework: Application to the wind turbine benchmark , 2013, 52nd IEEE Conference on Decision and Control.

[25]  C. Robert,et al.  Understanding Computational Bayesian Statistics , 2009 .

[26]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[27]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[28]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .