Prefrontal contributions to visual selective attention.

The faculty of attention endows us with the capacity to process important sensory information selectively while disregarding information that is potentially distracting. Much of our understanding of the neural circuitry underlying this fundamental cognitive function comes from neurophysiological studies within the visual modality. Past evidence suggests that a principal function of the prefrontal cortex (PFC) is selective attention and that this function involves the modulation of sensory signals within posterior cortices. In this review, we discuss recent progress in identifying the specific prefrontal circuits controlling visual attention and its neural correlates within the primate visual system. In addition, we examine the persisting challenge of precisely defining how behavior should be affected when attentional function is lost.

[1]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[2]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[3]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[4]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[5]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[6]  J. Hoffman,et al.  The role of visual attention in saccadic eye movements , 1995, Perception & psychophysics.

[7]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[8]  Leslie G. Ungerleider,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[9]  Henry Kennedy,et al.  Pathways of Attention: Synaptic Relationships of Frontal Eye Field to V4, Lateral Intraparietal Cortex, and Area 46 in Macaque Monkey , 2011, The Journal of Neuroscience.

[10]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[11]  J. Fuster Memory in the cerebral cortex , 1994 .

[12]  T. Moore,et al.  The role of neuromodulators in selective attention , 2011, Trends in Cognitive Sciences.

[13]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[14]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[15]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[16]  P. Goldman-Rakic,et al.  Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Muir,et al.  Disruptive effects of muscimol infused into the basal forebrain on conditional discrimination and visual attention: differential interactions with cholinergic mechanisms , 2005, Psychopharmacology.

[18]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[19]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. , 1972, Journal of neurophysiology.

[20]  T. Robbins,et al.  The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. , 2009, Annual review of neuroscience.

[21]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[22]  S. Shipp The brain circuitry of attention , 2004, Trends in Cognitive Sciences.

[23]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[24]  P. Goldman-Rakic,et al.  The anatomy of dopamine in monkey and human prefrontal cortex. , 1992, Journal of neural transmission. Supplementum.

[25]  Stephen J. Gotts,et al.  Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention , 2012, Neuron.

[26]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[27]  M. Sahani,et al.  Cortical control of arm movements: a dynamical systems perspective. , 2013, Annual review of neuroscience.

[28]  P. Roelfsema,et al.  Modulation of the Contrast Response Function by Electrical Microstimulation of the Macaque Frontal Eye Field , 2009, The Journal of Neuroscience.

[29]  F. Castellanos,et al.  Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes , 2002, Nature Reviews Neuroscience.

[30]  J. Grafman,et al.  Sustained attention deficits in pat ients with right frontal lesions , 1996, Neuropsychologia.

[31]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[32]  Tirin Moore,et al.  Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field , 2007, Proceedings of the National Academy of Sciences.

[33]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[34]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[35]  G. Humphreys,et al.  Exploring selective attention in ADHD: visual search through space and time. , 2003, Journal of child psychology and psychiatry, and allied disciplines.

[36]  B. Fischer,et al.  Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys , 2004, Experimental Brain Research.

[37]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[38]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[39]  A. Doupe,et al.  Translating birdsong: songbirds as a model for basic and applied medical research. , 2013, Annual review of neuroscience.

[40]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[41]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[42]  J. Findlay,et al.  The Relationship between Eye Movements and Spatial Attention , 1986, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[43]  D. E. Irwin,et al.  Covert shifts of attention precede involuntary eye movements , 2004 .

[44]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[45]  R. Knight,et al.  Role of human prefrontal cortex in attention control. , 1995, Advances in neurology.

[46]  D. Ferrier The Functions of the Brain , 1887, Edinburgh Medical Journal.

[47]  G. Luppino,et al.  Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. , 2010, Cerebral cortex.

[48]  Richard J Krauzlis,et al.  Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments , 2010, Nature Neuroscience.

[49]  Monique Ernst,et al.  DOPA Decarboxylase Activity in Attention Deficit Hyperactivity Disorder Adults. A [Fluorine-18]Fluorodopa Positron Emission Tomographic Study , 1998, The Journal of Neuroscience.

[50]  Kelsey L. Clark,et al.  Probing neural circuitry and function with electrical microstimulation , 2011, Proceedings of the Royal Society B: Biological Sciences.

[51]  P H Schiller,et al.  Look and see: how the brain moves your eyes about. , 2001, Progress in brain research.

[52]  Tirin Moore,et al.  Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons , 2009, The Journal of Neuroscience.

[53]  Etienne Olivier,et al.  Contribution of the Monkey Frontal Eye Field to Covert Visual Attention , 2006, The Journal of Neuroscience.

[54]  R H Wurtz,et al.  The primate superior colliculus and the shift of visual attention. , 1972, Investigative ophthalmology.

[55]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[56]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[57]  J. Schall,et al.  Visual and Motor Connectivity and the Distribution of Calcium-Binding Proteins in Macaque Frontal Eye Field: Implications for Saccade Target Selection , 2009, Front. Neuroanat..

[58]  N. P. Bichot,et al.  Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. , 2005, Journal of neurophysiology.

[59]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[60]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[61]  E. Fetz,et al.  Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns , 1975, Experimental Brain Research.

[62]  R. Wurtz,et al.  Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. , 2000, Journal of neurophysiology.

[63]  M. Goldberg,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. , 1981, Journal of neurophysiology.

[64]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[65]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[66]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  G. Mengod,et al.  Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2009, Cerebral cortex.

[68]  John H R Maunsell,et al.  The effect of attention on neuronal responses to high and low contrast stimuli. , 2010, Journal of neurophysiology.

[69]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[70]  Nicholas A. Steinmetz,et al.  Top-down control of visual attention , 2010, Current Opinion in Neurobiology.

[71]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[72]  Tirin Moore,et al.  Selective Attention from Voluntary Control of Neurons in Prefrontal Cortex , 2011, Science.

[73]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[74]  M. Goldberg,et al.  Functional properties of corticotectal neurons in the monkey's frontal eye field. , 1987, Journal of neurophysiology.

[75]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[76]  Jerald D. Kralik,et al.  Representation of Attended Versus Remembered Locations in Prefrontal Cortex , 2004, PLoS biology.

[77]  C. Coen,et al.  Functions of the Brain , 1985 .

[78]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.