Morphological types of projection neurons in layer 5 of cat visual cortex

Pyramidal cells in layer 5 of the visual cortex have multiple cortical and subcortical projection sites. Previous studies found that many cells possess bifurcating axons and innervate more than one cortical or subcortical target, but cells projecting to both cortical and subcortical targets were not observed. The present study examines the morphology of cells in cat visual cortex projecting to the superior colliculus, the main subcortical target of layer 5, and cells in layer 5 projecting to cortical areas 18 and 19. The neurons that give rise to these different projections were retrogradely labelled and intracellularly stained in living brain slices.

[1]  K. Kawamura,et al.  Various types of corticotectal neurons of cats as demonstrated by means of retrograde axonal transport of horseradish peroxidase , 1979, Experimental Brain Research.

[2]  D. Whitteridge,et al.  The relationship of receptive field properties to the dendritic shape of neurones in the cat striate cortex. , 1984, The Journal of physiology.

[3]  J. Sprague,et al.  Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat , 1974, The Journal of comparative neurology.

[4]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[5]  D. Humphrey,et al.  Properties of pyramidal tract neuron system within a functionally defined subregion of primate motor cortex. , 1978, Journal of neurophysiology.

[6]  W. Greenough,et al.  Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice , 1984, Brain Research.

[7]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[8]  A. Harvey A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. , 1980, The Journal of physiology.

[9]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[10]  J. Olavarria,et al.  Widespread callosal connections in infragranular visual cortex of the rat , 1983, Brain Research.

[11]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[12]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[13]  R. Lemon,et al.  Absence of callosal collaterals derived from rat corticospinal neurons , 1980, Experimental Brain Research.

[14]  J. Olney,et al.  The anti-excitotoxic effects of certain anesthetics, analgesics and sedative-hypnotics , 1986, Neuroscience Letters.

[15]  W. Levick,et al.  Selectivity of microelectrodes in recordings from cat retinal ganglion cells. , 1974, Journal of neurophysiology.

[16]  Cat area 17. III. Response properties and orientation anisotropies of corticotectal cells. , 1986, Journal of neurophysiology.

[17]  B. V. Updyke,et al.  Topographic organization of the projections from cortical areas 17, 18, and 19 onto the thalamus, pretectum and superior colliculus in the cat , 1977, The Journal of comparative neurology.

[18]  S. Murray Sherman,et al.  Morphology of physiologically identified neurons in the visual cortex of the cat , 1979, Brain Research.

[19]  H. Holländer On the origin of the corticotectal projections in the cat , 2004, Experimental Brain Research.

[20]  G. Mower,et al.  Corticopontine cells in area 18 of the cat. , 1978, Journal of neurophysiology.

[21]  L. Haberly,et al.  Deep neurons in piriform cortex. I. Morphology and synaptically evoked responses including a unique high-amplitude paired shock facilitation. , 1989, Journal of neurophysiology.

[22]  W. R. Levick,et al.  Form and function of cat retinal ganglion cells , 1975, Nature.

[23]  R OTSUKA,et al.  [On the structure and segmentation of the cortical center of vision in the cat]. , 1962, Archiv fur Psychiatrie und Nervenkrankheiten, vereinigt mit Zeitschrift fur die gesamte Neurologie und Psychiatrie.

[24]  J. Malpeli,et al.  Cat area 17. II. Response properties of infragranular layer neurons in the absence of supragranular layer activity. , 1986, Journal of neurophysiology.

[25]  H. T. Chang,et al.  Cortical neurons with particular reference to the apical dendrites. , 1952, Cold Spring Harbor symposia on quantitative biology.

[26]  J Bullier,et al.  Branching and laminar origin of projections between visual cortical areas in the cat , 1984, The Journal of comparative neurology.

[27]  le Gros Clark We,et al.  The cells of Meynert in the visual cortex of the monkey. , 1942 .

[28]  Robert Shapley,et al.  Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs , 1979, Experimental Brain Research.

[29]  G. Schneider Two visual systems. , 1969, Science.

[30]  K. Albus,et al.  Cells of origin of the occipito-pontine projection in the cat: Functional properties and intracortical location , 1977, Experimental Brain Research.

[31]  Tetsuro Yamamoto,et al.  Morphology of layer V pyramidal neurons in the cat somatosensory cortex: an intracellular HRP study , 1987, Brain Research.

[32]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[33]  D. Whitteridge,et al.  Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17) , 1987, The Journal of comparative neurology.

[34]  B. Schofield,et al.  Morphology of corticotectal cells in the primary visual cortex of hooded rats , 1987, The Journal of comparative neurology.

[35]  S P Wise,et al.  Size, laminar and columnar distribution of efferent cells in the sensory‐motor cortex of monkeys , 1977, The Journal of comparative neurology.

[36]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[37]  K. Kawamura,et al.  Cortical neurons projecting to the pontine nuclei in the cat. An experimental study with the horseradish peroxidase technique , 1979, Experimental Brain Research.

[38]  L. Palmer,et al.  Visual receptive fields of single striate corical units projecting to the superior colliculus in the cat. , 1974, Brain research.

[39]  H. Kuypers,et al.  Branching cortical neurons in cat which project to the colliculi and to the pons: a retrograde fluorescent double-labeling study , 2004, Experimental Brain Research.

[40]  J G Malpeli,et al.  Cat area 17. IV. Two types of corticotectal cells defined by controlling geniculate inputs. , 1986, Journal of neurophysiology.

[41]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[42]  T. Tsumoto,et al.  Postnatal development of corticotectal neurons in the kitten striate cortex: A quantitative study with the horseradish peroxidase technique , 1983, The Journal of comparative neurology.

[43]  H. Edmonds,et al.  Pitfalls in the use of brain slices , 1988, Progress in Neurobiology.

[44]  A. Salm,et al.  Brain slice preparation: Hypothalamus , 1980, Brain Research Bulletin.

[45]  J. T. Weber,et al.  Interhemispheric and subcortical collaterals of single cortical neurons in the adult cat , 1983, Brain Research.

[46]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[47]  R H Masland,et al.  The shape and arrangement of the cholinergic neurons in the rabbit retina , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  L. Garey A light and electron microscopic study of the visual cortex of the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  D. V. van Essen,et al.  Cell structure and function in the visual cortex of the cat , 1974, The Journal of physiology.

[50]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[51]  J G Parnavelas,et al.  Organization of neurons in the visual cortex, area 17, of the rat. , 1977, Journal of anatomy.

[52]  J. Parnavelas,et al.  Distribution and morphology of functionally identified neurons in the visual cortex of the rat , 1983, Brain Research.

[53]  D. Winfield The effect of visual deprivation upon the Meynert cell in the striate cortex of the cat. , 1982, Brain research.

[54]  R. Mooney,et al.  The structural and functional characteristics of striate cortical neurons that innervate the superior colliculus and lateral posterior nucleus in hamster , 1986, Neuroscience.

[55]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[56]  T. Poggio,et al.  A theoretical analysis of electrical properties of spines , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[57]  C. Blakemore,et al.  The organization of corticocortical projections from area 17 to area 18 of the cat’s visual cortex , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  Charles D. Gilbert,et al.  The Role of Horizontal Connections in Generating Long Receptive Fields in the Cat Visual Cortex , 1989, The European journal of neuroscience.

[59]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  E. Fifková,et al.  Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation , 1975, Experimental Neurology.

[61]  A. Peters,et al.  The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. , 1970, The American journal of anatomy.

[62]  H Sherk,et al.  The visual claustrum of the cat. I. Structure and connections , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  D. Maurer,et al.  A new test of luminous efficiency for babies. , 1989, Investigative ophthalmology & visual science.

[64]  B. Schofield,et al.  Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat , 1988, The Journal of comparative neurology.

[65]  F. Marcoux,et al.  Ketamine prevents ischemic neuronal injury , 1988, Brain Research.

[66]  H. H. Magalha˜es-Castro,et al.  Identification of corticotectal cells of the visual cortex of cats by means of horseradish peroxidase , 1975, Brain Research.

[67]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[68]  D. Sholl,et al.  Pattern Discrimination and the Visual Cortex , 1953, Nature.

[69]  J. Bolz,et al.  Morphology of identified projection neurons in layer 5 of rat visual cortex , 1988, Neuroscience Letters.