Searching for Quasi-periodic Oscillations in Astrophysical Transients Using Gaussian Processes

Analyses of quasi-periodic oscillations (QPOs) are important to understanding the dynamic behavior in many astrophysical objects during transient events like gamma-ray bursts, solar flares, magnetar flares, and fast radio bursts. Astrophysicists often search for QPOs with frequency-domain methods such as (Lomb–Scargle) periodograms, which generally assume power-law models plus some excess around the QPO frequency. Time-series data can alternatively be investigated directly in the time domain using Gaussian process (GP) regression. While GP regression is computationally expensive in the general case, the properties of astrophysical data and models allow fast likelihood strategies. Heteroscedasticity and nonstationarity in data have been shown to cause bias in periodogram-based analyses. GPs can take account of these properties. Using GPs, we model QPOs as a stochastic process on top of a deterministic flare shape. Using Bayesian inference, we demonstrate how to infer GP hyperparameters and assign them physical meaning, such as the QPO frequency. We also perform model selection between QPOs and alternative models such as red noise and show that this can be used to reliably find QPOs. This method is easily applicable to a variety of different astrophysical data sets. We demonstrate the use of this method on a range of short transients: a gamma-ray burst, a magnetar flare, a magnetar giant flare, and simulated solar flare data.

[1]  Felipe A. Tobar,et al.  Detecting the periodicity of highly irregularly sampled light-curves with Gaussian processes: the case of SDSS J025214.67-002813.7 , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  P. Lasky,et al.  Pitfalls of Periodograms: The Nonstationarity Bias in the Analysis of Quasiperiodic Oscillations , 2021, The Astrophysical Journal Supplement Series.

[3]  Kendrick M. Smith,et al.  Sub-second periodicity in a fast radio burst , 2021, Nature.

[4]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[5]  A. Mahabal,et al.  Characterizing Sparse Asteroid Light Curves with Gaussian Processes , 2021, The Astronomical Journal.

[6]  E. G. Kupriyanova,et al.  Quasi-Periodic Pulsations in Solar and Stellar Flares: A Review of Underpinning Physical Mechanisms and Their Predicted Observational Signatures , 2021, Space Science Reviews.

[7]  V. Raymond,et al.  Density estimation with Gaussian processes for gravitational wave posteriors , 2021, Monthly Notices of the Royal Astronomical Society.

[8]  B. Joachimi,et al.  When tension is just a fluctuation , 2021 .

[9]  M. Tarnopolski,et al.  A Comprehensive Power Spectral Density Analysis of Astronomical Time Series. II. The Swift/BAT Long Gamma-Ray Bursts , 2021, The Astrophysical Journal.

[10]  D. Foreman-Mackey,et al.  Mapping Stellar Surfaces. II. An Interpretable Gaussian Process Model for Light Curves , 2021, The Astronomical Journal.

[11]  OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.

[12]  G. Ashton,et al.  Massively parallel Bayesian inference for transient gravitational-wave astronomy , 2020, Monthly Notices of the Royal Astronomical Society.

[13]  M. J. Williams,et al.  Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  P. Gallagher,et al.  Statistical Study of GOES X-Ray Quasi-periodic Pulsations in Solar Flares , 2020, The Astrophysical Journal.

[15]  E. Thrane,et al.  Toward the Unambiguous Identification of Supermassive Binary Black Holes through Bayesian Inference , 2020, The Astrophysical Journal.

[16]  M. Landoni,et al.  Looking at Blazar Light-curve Periodicities with Gaussian Processes , 2020, The Astrophysical Journal.

[17]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  A. Ingram,et al.  A review of quasi-periodic oscillations from black hole X-ray binaries: Observation and theory , 2019, New Astronomy Reviews.

[19]  D. Wilkins Low-frequency X-ray timing with Gaussian processes and reverberation in the radio-loud AGN 3C 120 , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  P. Lasky,et al.  Rotational evolution of the Vela pulsar during the 2016 glitch , 2019, Nature Astronomy.

[21]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[22]  J. Davenport,et al.  A Blueprint of State-of-the-art Techniques for Detecting Quasi-periodic Pulsations in Solar and Stellar Flares , 2018, The Astrophysical Journal Supplement Series.

[23]  C. Chirenti,et al.  A Reanalysis of Quasi-Periodic Oscillations from the SGR 1806-20 Giant Flare , 2018, 1808.09483.

[24]  G. Lapenta,et al.  Detection of Quasi-Periodic Pulsations in Solar EUV Time Series , 2018 .

[25]  V. Nakariakov,et al.  Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares , 2018, 1802.04180.

[26]  Bayesian model checking: A comparison of tests , 2017, Astronomy & Astrophysics.

[27]  R. Angus,et al.  Inferring probabilistic stellar rotation periods using Gaussian processes , 2017, 1706.05459.

[28]  J. Vanderplas Understanding the Lomb–Scargle Periodogram , 2017, 1703.09824.

[29]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[30]  Kaisey S. Mandel,et al.  Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis , 2017, 1702.05652.

[31]  H. Sotani,et al.  Probing nuclear bubble structure via neutron star asteroseismology , 2016, 1609.01802.

[32]  D. Walton,et al.  DETECTION OF VERY LOW-FREQUENCY, QUASI-PERIODIC OSCILLATIONS IN THE 2015 OUTBURST OF V404 CYGNI , 2016, 1610.08653.

[33]  P. Gallagher,et al.  A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES , 2016, 1610.07454.

[34]  D. Yuan,et al.  Quasi-periodic Pulsations in Solar and Stellar Flares: An Overview of Recent Results (Invited Review) , 2016, 1609.02689.

[35]  L. Kashapova,et al.  Relationship of Type III Radio Bursts with Quasi-periodic Pulsations in a Solar Flare , 2016, 1608.00129.

[36]  Diego Altamirano,et al.  A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743−322 , 2016, 1607.02866.

[37]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[38]  C. Guidorzi,et al.  Individual power density spectra of Swift gamma-ray bursts , 2016, 1603.06890.

[39]  H. Sotani,et al.  Possible identifications of newly observed magnetar quasi-periodic oscillations as crustal shear modes , 2015, 1508.01728.

[40]  Frequentist tests for Bayesian models , 2015, 1511.02363.

[41]  David M. Blei,et al.  Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models , 2014 .

[42]  J. Font,et al.  Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations , 2012, 1208.6443.

[43]  A. Watts Thermonuclear Burst Oscillations , 2012, 1203.2065.

[44]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[45]  Y. Levin,et al.  On the excitation of f modes and torsional modes by magnetar giant flares , 2011, 1103.0880.

[46]  H. Ziaeepour,et al.  Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field , 2011, 1101.3909.

[47]  K. Kokkotas,et al.  Magnetar oscillations in the presence of a crust , 2010, 1012.3103.

[48]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[49]  J. Font,et al.  Magneto-elastic oscillations and the damping of crustal shear modes in magnetars , 2010, 1007.0856.

[50]  Adam A. Miller,et al.  UNVEILING THE ORIGIN OF GRB 090709A: LACK OF PERIODICITY IN A REDDENED COSMOLOGICAL LONG-DURATION GAMMA-RAY BURST , 2009, 0911.3150.

[51]  G. Novara,et al.  XMM–Newton and Swift observations prove GRB 090709A to be a distant, standard, long GRB , 2009, 0911.1659.

[52]  V. Nakariakov,et al.  Quasi-Periodic Pulsations in Solar Flares , 2009 .

[53]  R. Perna,et al.  The first outburst of the new magnetar candidate SGR 0501+4516 , 2009, 0904.2413.

[54]  K. Kokkotas,et al.  On the quasi‐periodic oscillations in magnetars , 2009, 0902.1401.

[55]  V. Nakariakov,et al.  Multi-wavelength spatially resolved analysis of quasi-periodic pulsations in a solar flare , 2008 .

[56]  N. Stergioulas,et al.  Alfv\'en QPOs in Magnetars , 2007, 0710.1113.

[57]  Y. Levin On the theory of magnetar QPOs , 2006, astro-ph/0612725.

[58]  K. Shibata,et al.  Dead Zone Formation and Nonsteady Hyperaccretion in Collapsar Disks: A Possible Origin of Short-Term Variability in the Prompt Emission of Gamma-Ray Bursts , 2006, astro-ph/0612664.

[59]  L. Samuelsson,et al.  Neutron star asteroseismology. Axial crust oscillations in the Cowling approximation , 2006, astro-ph/0609265.

[60]  N. Stergioulas,et al.  Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields II. Global Alfven Modes , 2006, astro-ph/0611666.

[61]  Tony O’Hagan Bayes factors , 2006 .

[62]  Tod E. Strohmayer,et al.  The 2004 Hyperflare from SGR 1806–20: Further Evidence for Global Torsional Vibrations , 2006, astro-ph/0608463.

[63]  Y. Levin QPOs during magnetar flares are not driven by mechanical normal modes of the crust , 2006, astro-ph/0601020.

[64]  T. Strohmayer,et al.  Detection with RHESSI of High-Frequency X-Ray Oscillations in the Tailof the 2004 Hyperflare from SGR 1806–20 , 2005, astro-ph/0512630.

[65]  T. Strohmayer,et al.  Discovery of Fast X-Ray Oscillations during the 1998 Giant Flare from SGR 1900+14 , 2005, astro-ph/0508206.

[66]  K. Shibasaki,et al.  Spatially resolved microwave pulsations of a flare loop , 2005 .

[67]  L. Stella,et al.  The Discovery of Rapid X-Ray Oscillations in the Tail of the SGR 1806–20 Hyperflare , 2005, astro-ph/0505255.

[68]  T. Sakamoto,et al.  A giant γ-ray flare from the magnetar SGR 1806–20 , 2005, Nature.

[69]  A. Rau,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[70]  M. Kundu,et al.  Quasi-periodic Pulsations in a Solar Microwave Burst , 2003 .

[71]  K. Shibasaki,et al.  Periodic Acceleration of Electrons in the 1998 November 10 Solar Flare , 2001, astro-ph/0111018.

[72]  R. Svensson,et al.  Power Density Spectra of Gamma-Ray Bursts , 1999, astro-ph/9911122.

[73]  A. Jaffe,et al.  Computing challenges of the cosmic microwave background , 1999, Comput. Sci. Eng..

[74]  L. Eyer,et al.  VARIABLE STARS : WHICH NYQUIST FREQUENCY? , 1998, astro-ph/9808176.

[75]  Gerald J. Fishman,et al.  Attributes of Pulses in Long Bright Gamma-Ray Bursts , 1996 .

[76]  Graham C. Goodwin,et al.  PARAMETER ESTIMATION FOR PERIODIC ARMA MODELS , 1995 .

[77]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[78]  K. Kai,et al.  Acceleration and confinement of energetic particles in the 1980 June 7 solar flare , 1983 .

[79]  G. Parks,et al.  SIXTEEN-SECOND PERIODIC PULSATIONS OBSERVED IN THE CORRELATED MICROWAVE AND ENERGETIC X-RAY EMISSION FROM A SOLAR FLARE. , 1969 .

[80]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[81]  Peter Whittle,et al.  Hypothesis Testing in Time Series Analysis. , 1951 .

[82]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[83]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[84]  Кпсс,et al.  Первая конференция военных и боевых организаций РСДРП. Ноябрь 1906 год , 1932 .

[85]  D. Spicer,et al.  Solar Physics , 1881, Nature.