Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation.

We have developed a general synthetic route to encapsulate small molecules in monodisperse zeolitic imid-azolate framework-8 (ZIF-8) nanospheres for drug delivery. Electron microscopy, powder X-ray diffraction, and elemental analysis show that the small-molecule-encapsulated ZIF-8 nanospheres are uniform 70 nm particles with single-crystalline structure. Several small molecules, including fluorescein and the anticancer drug camptothecin, were encapsulated inside of the ZIF-8 framework. Evaluation of fluorescein-encapsulated ZIF-8 nanospheres in the MCF-7 breast cancer cell line demonstrated cell internalization and minimal cytotoxicity. The 70 nm particle size facilitates cellular uptake, and the pH-responsive dissociation of the ZIF-8 framework likely results in endosomal release of the small-molecule cargo, thereby rendering the ZIF-8 scaffold an ideal drug delivery vehicle. To confirm this, we demonstrate that camptothecin encapsulated ZIF-8 particles show enhanced cell death, indicative of internalization and intracellular release of the drug. To demonstrate the versatility of this ZIF-8 system, iron oxide nanoparticles were also encapsulated into the ZIF-8 nanospheres, thereby endowing magnetic features to these nanospheres.

[1]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[2]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[3]  Willem L. Vos,et al.  Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres , 1999 .

[4]  R. Banerjee,et al.  Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. , 2008, Journal of the American Chemical Society.

[5]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[6]  S. Nie,et al.  Therapeutic Nanoparticles for Drug Delivery in Cancer Types of Nanoparticles Used as Drug Delivery Systems , 2022 .

[7]  S. Granick,et al.  Electric field-induced assembly of monodisperse polyhedral metal-organic framework crystals. , 2013, Journal of the American Chemical Society.

[8]  Wenbin Lin,et al.  Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. , 2008, Journal of the American Chemical Society.

[9]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[10]  R. Zhang,et al.  Upregulation of p21WAF1/CIP1 in human breast cancer cell lines MCF-7 and MDA-MB-468 undergoing apoptosis induced by natural product anticancer drugs 10-hydroxycamptothecin and camptothecin through p53-dependent and independent pathways. , 1998, International journal of oncology.

[12]  J. Jasinski,et al.  Structural evolution of zeolitic imidazolate framework-8. , 2010, Journal of the American Chemical Society.

[13]  Inhar Imaz,et al.  Metal-organic spheres as functional systems for guest encapsulation. , 2009, Angewandte Chemie.

[14]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[15]  Walter F Paxton,et al.  Motility of catalytic nanoparticles through self-generated forces. , 2005, Chemistry.

[16]  Wayne Ouellette,et al.  Cytotoxicity of mesoporous silica nanomaterials. , 2008, Journal of inorganic biochemistry.

[17]  Lide Zhang,et al.  Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery , 2011 .

[18]  M. Dewhirst,et al.  Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. , 2000, Cancer research.

[19]  Linlin Li,et al.  Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery , 2012, Advanced materials.

[20]  Sabine Neuss,et al.  Size-dependent cytotoxicity of gold nanoparticles. , 2007, Small.

[21]  Peng Huang,et al.  Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. , 2012, Dalton transactions.

[22]  Q. Huo,et al.  Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials , 1996 .

[23]  R. Hertzberg,et al.  Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. , 1985, The Journal of biological chemistry.

[24]  Eric J. Hurtado,et al.  Selective gas sorption within a dynamic metal-organic framework. , 2007, Inorganic chemistry.

[25]  Steve Granick,et al.  Directional self-assembly of a colloidal metal-organic framework. , 2012, Angewandte Chemie.

[26]  J. Hernando,et al.  Coordination polymer particles as potential drug delivery systems. , 2010, Chemical communications.

[27]  Yaping Li,et al.  Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. , 2009, Small.

[28]  Alexander Lux,et al.  Zinc in plants. , 2007, The New phytologist.

[29]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[30]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[31]  B. Lebeau,et al.  Ecodesign of ordered mesoporous silica materials. , 2013, Chemical Society reviews.

[32]  Timothy J Shaw,et al.  Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. , 2009, Small.

[33]  Zhen Cheng,et al.  Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. , 2010, ACS nano.

[34]  Zipeng Zhao,et al.  Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. , 2012, Journal of the American Chemical Society.

[35]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[36]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[37]  J. Hupp,et al.  Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. , 2012, Journal of the American Chemical Society.

[38]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[39]  Qiang Xu,et al.  Porous Metal—Organic Frameworks as Platforms for Functional Applications , 2011 .

[40]  Yang Shi-ping Nanoscale metal-organic frameworks for biomedical imaging and drug delivery , 2012 .

[41]  Seda Keskin,et al.  Biomedical Applications of Metal Organic Frameworks , 2011 .

[42]  Jin Xie,et al.  Nanoparticle-based theranostic agents. , 2010, Advanced drug delivery reviews.

[43]  Younan Xia,et al.  Gold nanostructures: a class of multifunctional materials for biomedical applications. , 2011, Chemical Society reviews.

[44]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[45]  Alaaldin M. Alkilany,et al.  Gold nanoparticles in biology: beyond toxicity to cellular imaging. , 2008, Accounts of chemical research.

[46]  Hung-Ting Chen,et al.  Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. , 2007, Accounts of chemical research.

[47]  Wenbin Lin,et al.  Nanoscale coordination polymers for platinum-based anticancer drug delivery. , 2008, Journal of the American Chemical Society.

[48]  Peter Wipf,et al.  Nanoparticles in cellular drug delivery. , 2009, Bioorganic & medicinal chemistry.

[49]  Qiang Xu,et al.  Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. , 2010, Journal of the American Chemical Society.

[50]  Subra Suresh,et al.  Size‐Dependent Endocytosis of Nanoparticles , 2009, Advanced materials.

[51]  I. Zuhorn,et al.  Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. , 2004, The Biochemical journal.

[52]  Aibing Yu,et al.  Inorganic nanoparticles as carriers for efficient cellular delivery , 2006 .

[53]  H. Su,et al.  Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants , 2011 .

[54]  C. Téllez,et al.  CAF@ZIF-8: one-step encapsulation of caffeine in MOF. , 2012, ACS applied materials & interfaces.

[55]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[56]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[57]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[58]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[59]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[60]  J. Moore,et al.  Chemoenzymatic synthesis of 3'-O-(carboxyalkyl)fluorescein labels. , 1999, Bioconjugate chemistry.

[61]  T. Mallouk,et al.  Chemistry at the nano-bio interface. , 2009, Journal of the American Chemical Society.

[62]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[63]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[64]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.