Primary visual cortex: awareness and blindsight.

The primary visual cortex (V1) is the principal telencephalic recipient of visual input in humans and monkeys. It is unique among cortical areas in that its destruction results in chronic blindness. However, certain patients with V1 damage, though lacking visual awareness, exhibit visually guided behavior: blindsight. This phenomenon, together with evidence from electrophysiological, neuroimaging, and psychophysical experiments, has led to speculation that V1 activity has a special or direct role in generating conscious perception. To explore this issue, this article reviews experiments that have used two powerful paradigms--stimulus-induced perceptual suppression and chronic V1 ablation--each of which disrupts the ability to perceive salient visual stimuli. Focus is placed on recent neurophysiological, behavioral, and functional imaging studies from the nonhuman primate that shed light on V1's role in conscious awareness. In addition, anatomical pathways that relay visual information to the cortex during normal vision and in blindsight are reviewed. Although the critical role of V1 in primate vision follows naturally from its position as a bottleneck of visual signals, little evidence supports its direct contribution to visual awareness.

[1]  I. Fried,et al.  Neural “Ignition”: Enhanced Activation Linked to Perceptual Awareness in Human Ventral Stream Visual Cortex , 2009, Neuron.

[2]  S Zeki,et al.  Conscious visual perception without V1. , 1993, Brain : a journal of neurology.

[3]  David A. Leopold,et al.  Generalized Flash Suppression of Salient Visual Targets , 2003, Neuron.

[4]  Alan Peters,et al.  The Organization of the Primary Visual Cortex in the Macaque , 1994 .

[5]  H. Klüver Visual Functions After Removal of the Occipital Lobes , 1941 .

[6]  D. Leopold,et al.  Neural activity in the visual thalamus reflects perceptual suppression , 2009, Proceedings of the National Academy of Sciences.

[7]  C. Koch,et al.  The Neural Correlates of Consciousness , 2008, Annals of the New York Academy of Sciences.

[8]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[9]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[10]  K. Nakayama,et al.  Binocular Rivalry and Visual Awareness in Human Extrastriate Cortex , 1998, Neuron.

[11]  A. Cowey,et al.  Is blindsight like normal, near-threshold vision? , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  David L. Sheinberg,et al.  The role of temporal cortical areas in perceptual organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Dacey,et al.  Y-Cell Receptive Field and Collicular Projection of Parasol Ganglion Cells in Macaque Monkey Retina , 2008, The Journal of Neuroscience.

[14]  D. B. Bender,et al.  Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures. , 1975, Journal of neurophysiology.

[15]  G. Elston,et al.  Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex , 2000, The Journal of Neuroscience.

[16]  Alexander Maier,et al.  Infragranular Sources of Sustained Local Field Potential Responses in Macaque Primary Visual Cortex , 2011, The Journal of Neuroscience.

[17]  Derek H. Arnold,et al.  Learning to reach for ‘invisible’ visual input , 2011, Current Biology.

[18]  Randolph Blake,et al.  Strength of early visual adaptation depends on visual awareness. , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Held,et al.  Residual Visual Function after Brain Wounds involving the Central Visual Pathways in Man , 1973, Nature.

[20]  L. Weiskrantz,et al.  Is blindsight just degraded normal vision? , 2008, Experimental Brain Research.

[21]  T. Isa,et al.  Saccade control after V1 lesion revisited , 2009, Current Opinion in Neurobiology.

[22]  Brendan J. O'Brien,et al.  The retinal input to calbindin-D28k-defined subdivisions in macaque inferior pulvinar , 2001, Neuroscience Letters.

[23]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[24]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[25]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[26]  Yusuke Murayama,et al.  Attention But Not Awareness Modulates the BOLD Signal in the Human V1 During Binocular Suppression , 2011, Science.

[27]  S. Sherman,et al.  Thalamic relays and cortical functioning. , 2005, Progress in brain research.

[28]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[29]  E. G. Keating,et al.  The primate visual system after bilateral removal of striate cortex , 1981, Experimental Brain Research.

[30]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[31]  P. Somogyi,et al.  GABA Immunopositive axons in the optic nerve and optic tract of Macaque Monkeys , 1996, Vision Research.

[32]  N K Humphrey,et al.  Vision in a Monkey without Striate Cortex: A Case Study , 1974, Perception.

[33]  Bruce G Cumming,et al.  Decision-related activity in sensory neurons: correlations among neurons and with behavior. , 2012, Annual review of neuroscience.

[34]  Georgios A. Keliris,et al.  The Role of the Primary Visual Cortex in Perceptual Suppression of Salient Visual Stimuli , 2010, The Journal of Neuroscience.

[35]  T. Pasik,et al.  Extrageniculostriate vision in the monkey III. Circle vs triangle and “red vs green” discrimination , 1972, Experimental Brain Research.

[36]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[37]  Victor A. F. Lamme Blindsight: the role of feedforward and feedback corticocortical connections. , 2001, Acta psychologica.

[38]  K. Yoshida,et al.  The afferent and efferent organization of the lateral geniculo‐prestriate pathways in the macaque monkey , 1981, The Journal of comparative neurology.

[39]  C. S. Green,et al.  Brain plasticity through the life span: learning to learn and action video games. , 2012, Annual review of neuroscience.

[40]  David A. Leopold,et al.  Blindsight depends on the lateral geniculate nucleus , 2010, Nature.

[41]  A. Cowey,et al.  Direct and indirect retinal input into degenerated dorsal lateral geniculate nucleus after striate cortical removal in monkey: implications for residual vision , 2004, Experimental Brain Research.

[42]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[43]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[44]  D. Amaral,et al.  The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey , 2005, The Journal of comparative neurology.

[45]  W. Usrey,et al.  Parallel Processing in the Corticogeniculate Pathway of the Macaque Monkey , 2009, Neuron.

[46]  R. Wurtz,et al.  Functional Identification of a Pulvinar Path from Superior Colliculus to Cortical Area MT , 2010, The Journal of Neuroscience.

[47]  J. Budd,et al.  A numerical analysis of the geniculocortical input to striate cortex in the monkey. , 1994, Cerebral cortex.

[48]  Rainer Goebel,et al.  Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients , 2001, Vision Research.

[49]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  M. Rosa,et al.  Visual responses of neurones in the second visual area of flying foxes (Pteropus poliocephalus) after lesions of striate cortex , 1998, The Journal of physiology.

[51]  P Pasik,et al.  Extrageniculostriate vision in the monkey. VII. Contrast sensitivity functions. , 1980, Journal of neurophysiology.

[52]  Semir Zeki,et al.  The primary visual cortex, and feedback to it, are not necessary for conscious vision. , 2011, Brain : a journal of neurology.

[53]  R Desimone,et al.  Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. , 1986, Journal of neurophysiology.

[54]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[55]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[56]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[57]  Peter H. Schiller,et al.  Parallel information processing channels created in the retina , 2010, Proceedings of the National Academy of Sciences.

[58]  D. Amaral,et al.  Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey , 2005, The Journal of comparative neurology.

[59]  J. Kaas,et al.  Area 17 lesions deactivate area MT in owl monkeys , 1992, Visual Neuroscience.

[60]  R H Wurtz,et al.  Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. , 1977, Journal of neurophysiology.

[61]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[62]  Sabine Kastner,et al.  Neural correlates of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature Neuroscience.

[63]  S Shipp,et al.  The functional logic of cortico-pulvinar connections. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.

[66]  Mark F Bear,et al.  The pathophysiology of fragile X (and what it teaches us about synapses). , 2012, Annual review of neuroscience.

[67]  A. Cowey,et al.  Blindsight in man and monkey. , 1997, Brain : a journal of neurology.

[68]  David A. Leopold,et al.  Measuring subjective visual perception in the nonhuman primate , 2003 .

[69]  A. Cowey,et al.  Blindsight in monkeys , 1995, Nature.

[70]  Sheng He,et al.  Seeing the invisible: The scope and limits of unconscious processing in binocular rivalry , 2008, Progress in Neurobiology.

[71]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[72]  Christof Koch,et al.  Single-neuron correlates of subjective vision in the human medial temporal lobe , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[74]  Juha Silvanto,et al.  Inducing conscious perception of colour in blindsight , 2008, Current Biology.

[75]  Mark Hübener,et al.  Critical-period plasticity in the visual cortex. , 2012, Annual review of neuroscience.

[76]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[77]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[78]  Christopher Kennard,et al.  Visual activation of extra-striate cortex in the absence of V1 activation , 2010, Neuropsychologia.

[79]  J. Kaas,et al.  Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates , 1989, Visual Neuroscience.

[80]  Tadashi Isa,et al.  Contribution of the retino‐tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys , 2011, The European journal of neuroscience.

[81]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[82]  Dov Sagi,et al.  Motion-induced blindness in normal observers , 2001, Nature.

[83]  Christopher J. Aura,et al.  Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey , 2008, Nature Neuroscience.

[84]  E. G. Jones,et al.  Viewpoint: the core and matrix of thalamic organization , 1998, Neuroscience.

[85]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[86]  N. Logothetis,et al.  Neuronal correlates of subjective visual perception. , 1989, Science.

[87]  A. Cowey,et al.  Prime-sight in a blindsight subject , 2002, Nature Neuroscience.

[88]  R. Eckhorn,et al.  Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. , 2004, Cerebral cortex.

[89]  J. Bourne,et al.  Neuroanatomy Original Research Article Materials and Methods , 2022 .

[90]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[91]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[92]  E. Warrington,et al.  "Blindsight": Vision in a field defect. , 1974, Lancet.

[93]  J. Baizer,et al.  Projections from the claustrum to the prelunate gyrus in the monkey , 1997, Experimental Brain Research.

[94]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[95]  A. Cowey The blindsight saga , 2009, Experimental Brain Research.

[96]  C. Koch,et al.  Continuous flash suppression reduces negative afterimages , 2005, Nature Neuroscience.

[97]  C G Gross,et al.  Localization of visual stimuli after striate cortex damage in monkeys: parallels with human blindsight. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[98]  J. Kaas,et al.  Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? , 1999, The European journal of neuroscience.

[99]  D. B. Bender Electrophysiological and behavioral experiments on the primate pulvinar. , 1988, Progress in brain research.

[100]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  J. K. Harting,et al.  Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species , 1991, The Journal of comparative neurology.

[102]  A. Cowey,et al.  Transneuronal retrograde degeneration of retinal ganglion cells after damage to striate cortex in macaque monkeys: Selective loss of Pβ cells , 1989, Neuroscience.

[103]  Edward M. Callaway,et al.  A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey , 2010, Neuron.

[104]  T. Preuss Evolutionary Specializations of Primate Brain Systems , 2007 .

[105]  Jean Bullier,et al.  The Role of Area 17 in the Transfer of Information to Extrastriate Visual Cortex , 1994 .

[106]  Nikos K. Logothetis,et al.  Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex , 2009, PloS one.

[107]  C. Gilbert,et al.  Attention and primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[108]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[109]  A. Cowey,et al.  Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys , 1994, Neuroscience.

[110]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[111]  T. Feinberg,et al.  Extrageniculostriate vision in the monkey. VI. Visually guided accurate reaching behavior , 1978, Brain Research.

[112]  Petra Stoerig,et al.  Blindsight, conscious vision, and the role of primary visual cortex. , 2006, Progress in brain research.

[113]  D. Snodderly,et al.  Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. , 1995, Journal of neurophysiology.

[114]  A. Cowey,et al.  Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey , 1984, Neuroscience.

[115]  Jeremy M. Wolfe,et al.  Reversing ocular dominance and suppression in a single flash , 1984, Vision Research.

[116]  Randolph Blake,et al.  Traveling waves of activity in primary visual cortex during binocular rivalry , 2005, Nature Neuroscience.

[117]  A. Hendrickson,et al.  Alterations of retinal inputs following striate cortex removal in adult monkey , 2004, Experimental Brain Research.

[118]  B. Wandell,et al.  Topographic Organization of Human Visual Areas in the Absence of Input from Primary Cortex , 1999, The Journal of Neuroscience.

[119]  D. Heeger,et al.  Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry , 2000, Nature Neuroscience.

[120]  Alan Cowey,et al.  The 30th Sir Frederick Bartlett Lecture: Fact, Artefact, and Myth about Blindsight , 2004, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[121]  Stephen A. Engel,et al.  Interocular rivalry revealed in the human cortical blind-spot representation , 2001, Nature.

[122]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  B. Barres,et al.  The complement system: an unexpected role in synaptic pruning during development and disease. , 2012, Annual review of neuroscience.

[124]  H. Rodman,et al.  Calbindin immunoreactivity in the geniculo‐extrastriate system of the macaque: Implications for heterogeneity in the koniocellular pathway and recovery from cortical damage , 2001, The Journal of comparative neurology.

[125]  G. Rees,et al.  What does Neural Plasticity Tell us about Role of Primary Visual Cortex (V1) in Visual Awareness? , 2010, Front. Psychology.

[126]  A. Hendrickson,et al.  Hypertrophy of neurons in dorsal lateral geniculate nucleus following striate cortex lesions in infant monkeys , 1982, Neuroscience Letters.

[127]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[128]  M. Livingstone,et al.  Perceptual and Physiological Evidence for a Role for Early Visual Areas in Motion-induced Blindness Introduction , 2022 .

[129]  David A. Leopold,et al.  Binocular rivalry and the illusion of monocular vision , 2004 .

[130]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[131]  Paul R. Martin,et al.  Retinal ganglion cell inputs to the koniocellular pathway , 2008, The Journal of comparative neurology.

[132]  J. Kaas,et al.  Responses of Neurons in the Middle Temporal Visual Area After Long-Standing Lesions of the Primary Visual Cortex in Adult New World Monkeys , 2003, The Journal of Neuroscience.

[133]  L. Mihailović,et al.  Changes in the numbers of neurons and glial cells in the lateral geniculate nucleus of the monkey during retrograde cell degeneration , 1971, The Journal of comparative neurology.

[134]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[135]  C. Koch,et al.  Are we aware of neural activity in primary visual cortex? , 1995, Nature.

[136]  David A. Leopold,et al.  Context-dependent perceptual modulation of single neurons in primate visual cortex , 2007, Proceedings of the National Academy of Sciences.