DVL-SLAM: sparse depth enhanced direct visual-LiDAR SLAM

This paper presents a framework for direct visual-LiDAR SLAM that combines the sparse depth measurement of light detection and ranging (LiDAR) with a monocular camera. The exploitation of the depth measurement between two sensor modalities has been reported in the literature but mostly by a keyframe-based approach or by using a dense depth map. When the sparsity becomes severe, the existing methods reveal limitation. The key finding of this paper is that the direct method is more robust under sparse depth with narrow field of view. The direct exploitation of sparse depth is achieved by implementing a joint optimization of each measurement under multiple keyframes. To ensure real-time performance, the keyframes of the sliding window are kept constant through rigorous marginalization. Through cross-validation, loop-closure achieves the robustness even in large-scale mapping. We intensively evaluated the proposed method using our own portable camera-LiDAR sensor system as well as the KITTI dataset. For the evaluation, the performance according to the LiDAR of sparsity was simulated by sampling the laser beam from 64 to 16 and 8. The experiment proves that the presented approach is significantly outperformed in terms of accuracy and robustness under sparse depth measurements.

[1]  Shaojie Shen,et al.  Monocular Visual–Inertial State Estimation With Online Initialization and Camera–IMU Extrinsic Calibration , 2017, IEEE Transactions on Automation Science and Engineering.

[2]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[3]  Michael Bosse,et al.  Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile Mapping , 2012, IEEE Transactions on Robotics.

[4]  Davide Scaramuzza,et al.  REMODE: Probabilistic, monocular dense reconstruction in real time , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[6]  Wolfram Burgard,et al.  Robust map optimization using dynamic covariance scaling , 2013, 2013 IEEE International Conference on Robotics and Automation.

[7]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[8]  Crystal Conde,et al.  Are we ready? , 2008, Texas medicine.

[9]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Martin Lauer,et al.  LIMO: Lidar-Monocular Visual Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[11]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Cyrill Stachniss,et al.  Accurate Direct Visual-Laser Odometry with Explicit Occlusion Handling and Plane Detection , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[13]  Kurt Konolige,et al.  Double window optimisation for constant time visual SLAM , 2011, 2011 International Conference on Computer Vision.

[14]  Andreas Geiger,et al.  Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[15]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Gaurav S. Sukhatme,et al.  Bias Reduction and Filter Convergence for Long Range Stereo , 2005, ISRR.

[17]  Daniel Cremers,et al.  Real-time visual odometry from dense RGB-D images , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[18]  Javier Civera,et al.  RGBDTAM: A cost-effective and accurate RGB-D tracking and mapping system , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  D. Lu,et al.  Vision-Enhanced Lidar Odometry and Mapping , 2016 .

[20]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Albert S. Huang,et al.  Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera , 2011, ISRR.

[22]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[23]  Bruce H. Thomas,et al.  Measuring ARTootKit accuracy in long distance tracking experiments , 2002, The First IEEE International Workshop Agumented Reality Toolkit,.

[24]  Ji Zhang,et al.  A real-time method for depth enhanced visual odometry , 2017, Auton. Robots.

[25]  Ji Zhang,et al.  Low-drift and real-time lidar odometry and mapping , 2017, Auton. Robots.

[26]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[27]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[28]  Davide Scaramuzza,et al.  A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[29]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[30]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[31]  Ayoung Kim,et al.  Direct Visual SLAM Using Sparse Depth for Camera-LiDAR System , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[32]  Jörg Stückler,et al.  Semi-Supervised Deep Learning for Monocular Depth Map Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Federico Tombari,et al.  CNN-SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Giorgio Grisetti,et al.  NICP: Dense normal based point cloud registration , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[35]  Ji Zhang,et al.  Visual-lidar odometry and mapping: low-drift, robust, and fast , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[36]  Rudolf Mester,et al.  Know Your Limits: Accuracy of Long Range Stereoscopic Object Measurements in Practice , 2014, ECCV.

[37]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[38]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[39]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[40]  Sridha Sridharan,et al.  Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Jörg Stückler,et al.  Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry , 2018, ECCV.

[42]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[43]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[44]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[45]  Tobias Höllerer,et al.  Live tracking and mapping from both general and rotation-only camera motion , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[46]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[48]  Qijun Chen,et al.  Scale Recovery for Monocular Visual Odometry Using Depth Estimated with Deep Convolutional Neural Fields , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[49]  ZhangJi,et al.  Low-drift and real-time lidar odometry and mapping , 2017 .

[50]  Stefano Soatto,et al.  Real-Time Feature Tracking and Outlier Rejection with Changes in Illumination , 2001, ICCV.

[51]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Dongheui Lee,et al.  Fast Visual Odometry Using Intensity-Assisted Iterative Closest Point , 2016, IEEE Robotics and Automation Letters.