Identification and estimation of non-Gaussian ARMA processes

A method to identify and estimate non-Gaussian autoregressive moving average (ARMA) processes which uses bispectral analysis and the Pade approximation is presented. It is shown that the method will consistently identify the order of the ARMA model and estimate the parameters of the model. Various asymptotic distributions are given to facilitate the model identification and parameter estimation. A few examples are presented to illustrate the effectiveness of the method. The procedure is modified to handle the case when there is additive Gaussian noise. The modified procedure is asymptotically consistent in the estimation of orders and parameters of the ARMA model when Gaussian noise is present. >

[1]  Jens-Peter Kreiss On Adaptive Estimation in Stationary ARMA Processes , 1987 .

[2]  Henry L. Gray,et al.  A New Approach to ARMA Modeling. , 1978 .

[3]  E. Hannan The estimation of mixed moving average autoregressive systems , 1969 .

[4]  K. S. Lii,et al.  Cross-Bispectrum Computation and Variance Estimation , 1981, TOMS.

[5]  T.J. Ulrych,et al.  Phase estimation using the bispectrum , 1984, Proceedings of the IEEE.

[6]  Leslie Godfrey,et al.  Testing the adequacy of a time series model , 1979 .

[7]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[8]  M. Rosenblatt,et al.  Deconvolution and Estimation of Transfer Function Phase and Coefficients for NonGaussian Linear Processes. , 1982 .

[9]  Jitendra K. Tugnait,et al.  Identification of non-minimum phase linear stochastic systems , 1986, Autom..

[10]  Donald Poskitt,et al.  Testing the specification of a fitted autoregressive-moving average model , 1980 .

[11]  Murray Rosenblatt,et al.  Estimation and deconvolution when the transfer function has zeros , 1988 .

[12]  Y. Chan,et al.  A new order determination technique for ARMA processes , 1984 .

[13]  M. Rosenblatt,et al.  ASYMPTOTIC THEORY OF ESTIMATES OF kTH-ORDER SPECTRA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Debasis Sengupta,et al.  Efficient estimation of parameters for non-Gaussian autoregressive processes , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[16]  J. Shanks RECURSION FILTERS FOR DIGITAL PROCESSING , 1967 .

[17]  T. W. Anderson Estimation for Autoregressive Moving Average Models in the Time and Frequency Domains , 1977 .

[18]  L. H. Koopmans The spectral analysis of time series , 1974 .

[19]  Keh-Shin Lii TRANSFER FUNCTION MODEL ORDER AND PARAMETER ESTIMATION , 1985 .

[20]  H. Akaike A Bayesian analysis of the minimum AIC procedure , 1978 .

[21]  Chrysostomos L. Nikias,et al.  ARMA bispectrum approach to nonminimum phase system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[22]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[23]  E. Hannan,et al.  Recursive estimation of mixed autoregressive-moving average order , 1982 .

[24]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[25]  Jitendra K. Tugnait,et al.  Identification of linear stochastic systems via second- and fourth-order cumulant matching , 1987, IEEE Trans. Inf. Theory.

[26]  H. L. Gray,et al.  On the Relationship between the S Array and the Box-Jenkins Method of ARMA Model Identification , 1981 .

[27]  K. Lii Model Identification and Estimation of NonGaussian ARMA Processes. , 1982 .

[28]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[29]  C. Ansley An algorithm for the exact likelihood of a mixed autoregressive-moving average process , 1979 .