Neural Collaborative Subspace Clustering

We introduce the Neural Collaborative Subspace Clustering, a neural model that discovers clusters of data points drawn from a union of low-dimensional subspaces. In contrast to previous attempts, our model runs without the aid of spectral clustering. This makes our algorithm one of the kinds that can gracefully scale to large datasets. At its heart, our neural model benefits from a classifier which determines whether a pair of points lies on the same subspace or not. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. We thoroughly assess and contrast the performance of our model against various state-of-the-art clustering algorithms including deep subspace-based ones.

[1]  Sreeram Kannan,et al.  ClusterGAN : Latent Space Clustering in Generative Adversarial Networks , 2018, AAAI.

[2]  Ehsan Elhamifar,et al.  Sparse subspace clustering , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[4]  Kenichi Kanatani,et al.  Motion segmentation by subspace separation and model selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[6]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Li Bai,et al.  Cosine Similarity Metric Learning for Face Verification , 2010, ACCV.

[8]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[9]  John Wright,et al.  Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[11]  René Vidal,et al.  Low rank subspace clustering (LRSC) , 2014, Pattern Recognit. Lett..

[12]  Daniel P. Robinson,et al.  Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Shuicheng Yan,et al.  Robust and Efficient Subspace Segmentation via Least Squares Regression , 2012, ECCV.

[14]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[17]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[18]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[19]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[20]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[21]  Bruce A. Draper,et al.  Semi-Nonnegative Matrix Factorization for Motion Segmentation with Missing Data , 2012, ECCV.

[22]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[23]  Tong Zhang,et al.  Deep Subspace Clustering Networks , 2017, NIPS.

[24]  P. Tseng Nearest q-Flat to m Points , 2000 .

[25]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[26]  René Vidal,et al.  Kernel sparse subspace clustering , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[27]  Junbin Gao,et al.  Kernel Sparse Subspace Clustering on Symmetric Positive Definite Manifolds , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Bo Yang,et al.  Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering , 2016, ICML.

[29]  Silvio Savarese,et al.  Deep Metric Learning via Lifted Structured Feature Embedding , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[31]  Yair Weiss,et al.  Multibody factorization with uncertainty and missing data using the EM algorithm , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[32]  Pat Langley,et al.  Crafting Papers on Machine Learning , 2000, ICML.

[33]  Gilad Lerman,et al.  Hybrid Linear Modeling via Local Best-Fit Flats , 2010, International Journal of Computer Vision.

[34]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[35]  Hongdong Li,et al.  Efficient dense subspace clustering , 2014, IEEE Winter Conference on Applications of Computer Vision.

[36]  Lingfeng Wang,et al.  Deep Adaptive Image Clustering , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[37]  Ian D. Reid,et al.  Scalable Deep k-Subspace Clustering , 2018, ACCV.

[38]  Daniel P. Robinson,et al.  Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Hongdong Li,et al.  Shape Interaction Matrix Revisited and Robustified: Efficient Subspace Clustering with Corrupted and Incomplete Data , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[40]  Dong Xu,et al.  Robust Kernel Low-Rank Representation , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[41]  Hongdong Li,et al.  Robust Motion Segmentation with Unknown Correspondences , 2014, ECCV.

[42]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[43]  Allen Y. Yang,et al.  Robust Statistical Estimation and Segmentation of Multiple Subspaces , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[44]  Allen Y. Yang,et al.  Unsupervised segmentation of natural images via lossy data compression , 2008, Comput. Vis. Image Underst..

[45]  Hongdong Li,et al.  Adaptive Low-Rank Kernel Subspace Clustering , 2017 .

[46]  René Vidal,et al.  Latent Space Sparse Subspace Clustering , 2013, 2013 IEEE International Conference on Computer Vision.

[47]  Guangliang Chen,et al.  Kernel Spectral Curvature Clustering (KSCC) , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[48]  Huan Xu,et al.  Provable Subspace Clustering: When LRR Meets SSC , 2013, IEEE Transactions on Information Theory.

[49]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[50]  Shuicheng Yan,et al.  Latent Low-Rank Representation for subspace segmentation and feature extraction , 2011, 2011 International Conference on Computer Vision.

[51]  Hongdong Li,et al.  Robust Multi-Body Feature Tracker: A Segmentation-Free Approach , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Paul S. Bradley,et al.  k-Plane Clustering , 2000, J. Glob. Optim..

[53]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[54]  Tat-Jun Chin,et al.  Clustering with Hypergraphs: The Case for Large Hyperedges , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[56]  Jitendra Malik,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Segmentation of Moving Objects by Long Term Video Analysis , 2022 .

[57]  Wei-Yun Yau,et al.  Deep Subspace Clustering with Sparsity Prior , 2016, IJCAI.

[58]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.