Variational composition of a monotone operator and a linear mapping with applications to elliptic PDEs with singular coefficients

Abstract This paper proposes a regularized notion of a composition of a monotone operator with a linear mapping. This new concept, called variational composition, can be shown to be maximal monotone in many cases where the usual composition is not. The two notions coincide, however, whenever the latter is maximal monotone. The utility of the variational composition is demonstrated by applications to subdifferential calculus, theory of measurable multifunctions, and elliptic PDEs with singular coefficients.

[1]  J. Mawhin,et al.  Nonlinear Operators and the Calculus of Variations , 1976 .

[2]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[3]  H. Attouch A General Duality Principle for the Sum of Two Operators 1 , 1996 .

[4]  R. T. Rockafellar,et al.  Generalized second derivatives of convex functions and saddle functions , 1990 .

[5]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[6]  Pierre Seppecher,et al.  Energies with respect to a measure and applications to low dimensional structures , 1997 .

[7]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[8]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[9]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[10]  S. Yau Mathematics and its applications , 2002 .

[11]  Stephen M. Robinson,et al.  Composition duality and maximal monotonicity , 1999, Math. Program..

[12]  Umberto Mosco,et al.  Composite media and asymptotic dirichlet forms , 1994 .

[13]  Teemu Pennanen,et al.  Dualization of Generalized Equations of Maximal Monotone Type , 1999, SIAM J. Optim..

[14]  H. Attouch Variational convergence for functions and operators , 1984 .

[15]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[16]  Variational Sum and Kato's Conjecture , 2002 .

[17]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[18]  J. Diestel Geometry of Banach Spaces: Selected Topics , 1975 .

[19]  R. Rockafellar,et al.  Integral functionals, normal integrands and measurable selections , 1976 .

[20]  M. Rao Measure Theory and Integration , 2018 .

[21]  Dennis F. Cudia The geometry of Banach spaces , 1964 .

[22]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[23]  Alberto Seeger,et al.  Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey , 1995 .

[24]  Variational and Extended Sums of Monotone Operators , 1999 .

[25]  H. Attouch,et al.  Variational Sum of Monotone Operators , 1994 .

[26]  H. Attouch,et al.  Variational Convergence for Functions and Operators (Applicable Mathematics Series) , 1984 .

[27]  M. Théra,et al.  Generalised second-order derivatives of convex functions in reflexive Banach spaces , 1995, Bulletin of the Australian Mathematical Society.

[28]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[29]  Michel Théra,et al.  Enlargements and Sums of Monotone Operators , 2001 .

[30]  R. Tyrrell Rockafellar,et al.  Convex Integral Functionals and Duality , 1971 .

[31]  R. Phelps,et al.  Subdifferential Calculus Using ϵ-Subdifferentials , 1993 .

[32]  R. Wets,et al.  Quantitative stability of variational systems. I. The epigraphical distance , 1991 .

[33]  D. Varberg Convex Functions , 1973 .

[34]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[35]  Lionel Thibault,et al.  A Generalized Sequential Formula for Subdifferentials of Sums of Convex Functions Defined on Banach Spaces , 1995 .

[36]  Hedy Attouch,et al.  Familles d'opérateurs maximaux monotones et mesurabilité , 1979 .

[37]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .

[38]  A. Damlamian,et al.  Application des méthodes de convexité et monotonie a l'étude de certaines équations quasi linéaires , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[39]  Amnon Pazy,et al.  Semi-groups of nonlinear contractions and dissipative sets☆ , 1969 .