Fast Bayesian inference of phylogenies from multiple continuous characters

Time-scaled phylogenetic trees are both an ultimate goal of evolutionary biology and a necessary ingredient in comparative studies. While accumulating genomic data has moved the field closer to a full description of the tree of life, the relative timing of certain evolutionary events remains challenging even when this data is abundant, and absolute timing is impossible without external information such as fossil ages and morphology. The field of phylogenetics lacks efficient tools integrating probabilistic models for these kinds of data into unified frameworks for estimating phylogenies. Here, we implement, benchmark and validate popular phylogenetic models for the study of paleontological and neontological continuous trait data, incorporating these models into the BEAST2 platform. Our methods scale well with number of taxa and of characters. We tip-date and estimate the topology of a phylogeny of Carnivora, comparing results from different configurations of integrative models capable of leveraging ages, as well as molecular and continuous morphological data from living and extinct species. Our results illustrate and advance the paradigm of Bayesian, probabilistic total evidence, in which explanatory models are fully defined, and inferential uncertainty in all their dimensions is accounted for.

[1]  F. Ronquist,et al.  Closing the gap between rocks and clocks using total-evidence dating , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  Leandro C. S. Assis,et al.  Individuals, kinds, phylogeny and taxonomy , 2011, Cladistics : the international journal of the Willi Hennig Society.

[3]  P. Palmqvist,et al.  A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb , 2014, BMC Evolutionary Biology.

[4]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[5]  T. Stadler Sampling-through-time in birth-death trees. , 2010, Journal of theoretical biology.

[6]  David Penny,et al.  Evolutionary biology: Relativity for molecular clocks , 2005, Nature.

[7]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[8]  Csaba Pal,et al.  Differential impact of simultaneous migration on coevolving hosts and parasites , 2007, BMC Evolutionary Biology.

[9]  L. Garamszegi,et al.  Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta‐analytic review , 2010, Biological reviews of the Cambridge Philosophical Society.

[10]  D. Adams,et al.  A METHOD FOR ASSESSING PHYLOGENETIC LEAST SQUARES MODELS FOR SHAPE AND OTHER HIGH‐DIMENSIONAL MULTIVARIATE DATA , 2014, Evolution; international journal of organic evolution.

[11]  Emmanuel F. A. Toussaint,et al.  Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths , 2019, Proceedings of the National Academy of Sciences.

[12]  P. Joyce,et al.  A NOVEL COMPARATIVE METHOD FOR IDENTIFYING SHIFTS IN THE RATE OF CHARACTER EVOLUTION ON TREES , 2011, Evolution; international journal of organic evolution.

[13]  Ming-Hui Chen,et al.  Improving marginal likelihood estimation for Bayesian phylogenetic model selection. , 2011, Systematic biology.

[14]  Mark N. Puttick,et al.  Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data , 2016, Biology Letters.

[15]  Michael S. Y. Lee,et al.  Morphological Phylogenetics in the Genomic Age , 2015, Current Biology.

[16]  James H. Degnan,et al.  GENE TREE DISTRIBUTIONS UNDER THE COALESCENT PROCESS , 2005, Evolution; international journal of organic evolution.

[17]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[18]  Laura Kubatko,et al.  Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. , 2014, Journal of theoretical biology.

[19]  Alexei J. Drummond,et al.  Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.

[20]  J. Stachowicz,et al.  Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marine amphipods. , 2013, Ecology letters.

[21]  P. Gunz,et al.  A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology , 2013 .

[22]  Alan Turner,et al.  The Big Cats and Their Fossil Relatives: An Illustrated Guide to Their Evolution and Natural History , 1997 .

[23]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[24]  J. Welch,et al.  Molecular dates for the "cambrian explosion": the influence of prior assumptions. , 2005, Systematic biology.

[25]  M. O'Leary,et al.  Parsimony Analysis of Total Evidence from Extinct and Extant Taxa and the Cetacean-Artiodactyl Question (Mammalia, Ungulata)☆ , 1999 .

[26]  Hong-Wei Xue,et al.  Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling , 2016, Nature Communications.

[27]  T. F. Hansen,et al.  TRANSLATING BETWEEN MICROEVOLUTIONARY PROCESS AND MACROEVOLUTIONARY PATTERNS: THE CORRELATION STRUCTURE OF INTERSPECIFIC DATA , 1996, Evolution; international journal of organic evolution.

[28]  P. David,et al.  Diversity spurs diversification in ecological communities , 2017, Nature Communications.

[29]  Andreas R. Pfenning,et al.  Comparative genomics reveals insights into avian genome evolution and adaptation , 2014, Science.

[30]  H. Ellegren,et al.  The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds , 2015, PLoS biology.

[31]  A. Turner,et al.  FIRST KNOWN COMPLETE SKULLS OF THE SCIMITAR-TOOTHED CAT MACHAIRODUS APHANISTUS (FELIDAE, CARNIVORA) FROM THE SPANISH LATE MIOCENE SITE OF BATALLONES-1 , 2004 .

[32]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Muzny,et al.  Paternal age in rhesus macaques is positively associated with germline mutation accumulation but not with measures of offspring sociability , 2019, bioRxiv.

[34]  Xing Xu,et al.  Pennaraptoran Theropod Dinosaurs Past Progress and New Frontiers , 2020, Bulletin of the American Museum of Natural History.

[35]  Matthew W. Hahn,et al.  Gene Tree Discordance Can Generate Patterns of Diminishing Convergence over Time. , 2016, Molecular biology and evolution.

[36]  C. Parins-Fukuchi Bayesian placement of fossils on phylogenies using quantitative morphometric data , 2018, Evolution; international journal of organic evolution.

[37]  Xiaoming Wang,et al.  Phylogenetic Systematics of the North American Fossil Caninae (Carnivora: Canidae) , 2009 .

[38]  R. Kümmerli,et al.  Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms , 2015, Nature Communications.

[39]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[40]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2019, PLoS computational biology.

[41]  D. Silvestro,et al.  Early Arrival and Climatically-Linked Geographic Expansion of New World Monkeys from Tiny African Ancestors , 2018, Systematic biology.

[42]  Matthew W. Hahn,et al.  Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation , 2016, PLoS biology.

[43]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[44]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[45]  H. Morlon,et al.  Accelerated body size evolution during cold climatic periods in the Cenozoic , 2017, Proceedings of the National Academy of Sciences.

[46]  A. Lister The role of behaviour in adaptive morphological evolution of African proboscideans , 2013, Nature.

[47]  J. Gower Generalized procrustes analysis , 1975 .

[48]  Md. Shamsuzzoha Bayzid,et al.  Whole-genome analyses resolve early branches in the tree of life of modern birds , 2014, Science.

[49]  F. K. Mendes,et al.  A multi‐platform package for the analysis of intra‐ and interspecific trait evolution , 2020, Methods in Ecology and Evolution.

[50]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[51]  H. Poinar,et al.  Ancient DNA: Do It Right or Not at All , 2000, Science.

[52]  Chao Zhang,et al.  ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees , 2018, BMC Bioinformatics.

[53]  M. Donoghue,et al.  Rates of Molecular Evolution Are Linked to Life History in Flowering Plants , 2008, Science.

[54]  Michael J. Landis,et al.  Pulsed evolution shaped modern vertebrate body sizes , 2017, Proceedings of the National Academy of Sciences.

[55]  R. Bleiweiss Slow rate of molecular evolution in high-elevation hummingbirds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Goswami,et al.  The macroevolutionary consequences of phenotypic integration: from development to deep time , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[57]  H. Kishino,et al.  Estimation of Divergence Times from Molecular Sequence Data , 2005 .

[58]  S. O’Brien,et al.  Phylogeny and evolution of cats (Felidae) , 2010 .

[59]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[60]  M. Pagel,et al.  Speciation as an active force in promoting genetic evolution. , 2010, Trends in ecology & evolution.

[61]  Ming-Hui Chen,et al.  Choosing among Partition Models in Bayesian Phylogenetics , 2010, Molecular biology and evolution.

[62]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[63]  E. Hook,et al.  Paternal age. , 1983, Human genetics.

[64]  M. O'Leary Parsimony Analysis of Total Evidence from Extinct and Extant Taxa and the Cetacean‐Artiodactyl Question (Mammalia, Ungulata) , 1999, Cladistics : the international journal of the Willi Hennig Society.

[65]  W. Wheeler,et al.  Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology , 2007, Cladistics : the international journal of the Willi Hennig Society.

[66]  A. Brower Comment on "Molecular Phylogenies Link Rates of Evolution and Speciation" (II) , 2004, Science.

[67]  S. Wright,et al.  An Analysis of Variability in Number of Digits in an Inbred Strain of Guinea Pigs. , 1934, Genetics.

[68]  Mark Pagel,et al.  Molecular Phylogenies Link Rates of Evolution and Speciation , 2003, Science.

[69]  D. Adams,et al.  Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations , 2018, Systematic biology.

[70]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[71]  D. Adams,et al.  Are rates of species diversification correlated with rates of morphological evolution? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[72]  Tanja Stadler,et al.  Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration , 2014, PLoS Comput. Biol..

[73]  Joseph Felsenstein,et al.  Using the quantitative genetic threshold model for inferences between and within species , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  Leonard J. Gray,et al.  Three Dimensional Analysis , 2008 .

[75]  P. D. Polly,et al.  A Bayesian extension of phylogenetic generalized least squares: Incorporating uncertainty in the comparative study of trait relationships and evolutionary rates , 2019, Evolution; international journal of organic evolution.

[76]  A Bayesian Approach for Inferring the Impact of a Discrete Character on Rates of Continuous-Character Evolution in the Presence of Background-Rate Variation , 2019, Systematic biology.

[77]  P. Goloboff,et al.  Continuous characters analyzed as such , 2006, Cladistics : the international journal of the Willi Hennig Society.

[78]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[79]  L. Gillman,et al.  The road from Santa Rosalia: A faster tempo of evolution in tropical climates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Cheverud Genetics and analysis of quantitative traits , 1999 .

[81]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[82]  Matthew W. Hahn,et al.  Why Concatenation Fails Near the Anomaly Zone , 2018, Systematic biology.

[83]  L. Pauling,et al.  Molecules as documents of evolutionary history. , 1965, Journal of theoretical biology.

[84]  Ziheng Yang,et al.  Computational Molecular Evolution , 2006 .

[85]  C. Parins-Fukuchi Use of Continuous Traits Can Improve Morphological Phylogenetics , 2017, bioRxiv.

[86]  J. Felsenstein,et al.  A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. , 1994, Molecular biology and evolution.

[87]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[88]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic Biology.

[89]  Seth Kaufman,et al.  MorphoBank: phylophenomics in the “cloud” , 2011, Cladistics : the international journal of the Willi Hennig Society.

[90]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[91]  RICHARD H. Thomas,et al.  Problems of reproducibility – does geologically ancient DNA survive in amber–preserved insects? , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  Bryan Kolaczkowski,et al.  Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous , 2004, Nature.

[93]  T. Garland,et al.  Within-species variation and measurement error in phylogenetic comparative methods. , 2007, Systematic biology.

[94]  Michael S. Barker,et al.  A total evidence approach to understanding phylogenetic relationships and ecological diversity in Selaginella subg. Tetragonostachys. , 2013, American journal of botany.

[95]  David L. Swofford,et al.  Are Guinea Pigs Rodents? The Importance of Adequate Models in Molecular Phylogenetics , 1997, Journal of Mammalian Evolution.

[96]  Simon Whelan,et al.  Statistical Methods in Molecular Evolution , 2005 .

[97]  A. Ozga,et al.  Dire wolves were the last of an ancient New World canid lineage , 2021, Nature.

[98]  A. Meyer,et al.  Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. , 2000, The Journal of experimental zoology.

[99]  Carnivore Behavior, Ecology, and Evolution , 1989 .

[100]  T. F. Hansen,et al.  Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. , 2012, Systematic biology.

[101]  J. Felsenstein,et al.  EVOLUTIONARY TREES FROM GENE FREQUENCIES AND QUANTITATIVE CHARACTERS: FINDING MAXIMUM LIKELIHOOD ESTIMATES , 1981, Evolution; international journal of organic evolution.

[102]  J. Huelsenbeck,et al.  The fossilized birth–death process for coherent calibration of divergence-time estimates , 2013, Proceedings of the National Academy of Sciences.

[103]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[104]  S. Ho,et al.  Elevated substitution rates estimated from ancient DNA sequences , 2007, Biology Letters.

[105]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[106]  Matthew W. Pennell,et al.  Rethinking phylogenetic comparative methods. , 2018, Systematic biology.

[107]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[108]  Seán G. Brady,et al.  The history of early bee diversification based on five genes plus morphology , 2006, Proceedings of the National Academy of Sciences.

[109]  Sebastián Duchêne,et al.  Molecular‐clock methods for estimating evolutionary rates and timescales , 2014, Molecular ecology.

[110]  Alex Wong,et al.  Evolution of protein-coding genes in Drosophila. , 2008, Trends in genetics : TIG.

[111]  Gonzalo Giribet,et al.  Arthropod phylogeny based on eight molecular loci and morphology , 2001, Nature.

[112]  H. Morlon,et al.  Assessing the causes of diversification slowdowns: temperature-dependent and diversity-dependent models receive equivalent support. , 2019, Ecology letters.

[113]  N. Solounias,et al.  The Hyaenidae: Taxonomy, Systematics and Evolution , 1991 .

[114]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[115]  R. Lanfear,et al.  Watching the clock: studying variation in rates of molecular evolution between species. , 2010, Trends in ecology & evolution.

[116]  Ziheng Yang,et al.  Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.

[117]  Ziheng Yang,et al.  Exploring uncertainty in the calibration of the molecular clock , 2012, Biology Letters.

[118]  J. L. Gittleman,et al.  EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA , 2010, Evolution; international journal of organic evolution.

[119]  David Mandzuk,et al.  Exploring Uncertainty , 2018, Navigating Uncertainty.

[120]  Michael J. Sanderson,et al.  TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD , 2006, Evolution; international journal of organic evolution.

[121]  J. Schraiber,et al.  A multispecies coalescent model for quantitative traits , 2018, eLife.

[122]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[123]  Tanja Stadler,et al.  Dating phylogenies with sequentially sampled tips. , 2013, Systematic biology.

[124]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[125]  W. Wheeler,et al.  Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total‐evidence analysis , 2009 .

[126]  M. Bendall,et al.  The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (decapoda: achelata, astacidea, glypheidea, polychelida). , 2014, Systematic biology.

[127]  C. Witt,et al.  Comment on "Molecular Phylogenies Link Rates of Evolution and Speciation" (I) , 2004, Science.

[128]  Mark N. Puttick,et al.  Empirical realism of simulated data is more important than the model used to generate it: a reply to Goloboff et al. , 2018 .

[129]  Alexei J Drummond,et al.  Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. , 2005, Molecular biology and evolution.

[130]  W. Wheeler,et al.  PHYLOGENETIC SYSTEMATICS OF DART-POISON FROGS AND THEIR RELATIVES (AMPHIBIA: ATHESPHATANURA: DENDROBATIDAE) , 2006 .

[131]  S. Blomberg,et al.  Beyond Brownian Motion and the Ornstein-Uhlenbeck Process: Stochastic Diffusion Models for the Evolution of Quantitative Characters , 2020, The American Naturalist.

[132]  A. Goswami,et al.  The evolution of orbit orientation and encephalization in the Carnivora (Mammalia) , 2009, Journal of anatomy.

[133]  L. Werdelin Carnivoran ecomorphology: a phylogenetic perspective , 1996 .

[134]  F. Ayala,et al.  This paper was presented at a colloquium entitled ‘ ‘ Genetics and the Origin of Species , ’ ’ organized , 1997 .

[135]  Tanja Stadler,et al.  Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts. , 2019, Theoretical population biology.

[136]  Eric W Goolsby,et al.  Likelihood-Based Parameter Estimation for High-Dimensional Phylogenetic Comparative Models: Overcoming the Limitations of "Distance-Based" Methods. , 2016, Systematic biology.

[137]  G. Merceron,et al.  mvmorph: an r package for fitting multivariate evolutionary models to morphometric data , 2015 .

[138]  J. Leeuw,et al.  More on Multidimensional Scaling and Unfolding in R: smacof Version 2 , 2022, J. Stat. Softw..

[139]  L. O.,et al.  A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data , 2002 .

[140]  S. Ho,et al.  Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.

[141]  H. Morlon,et al.  Uncovering Higher‐Taxon Diversification Dynamics from Clade Age and Species‐Richness Data , 2016, Systematic biology.

[142]  Robert P. Freckleton,et al.  Fast likelihood calculations for comparative analyses , 2012 .

[143]  H. Ross,et al.  Latitude, elevation and the tempo of molecular evolution in mammals , 2009, Proceedings of the Royal Society B: Biological Sciences.

[144]  D. Soltis,et al.  Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. , 2007, Systematic biology.

[145]  Anjali Goswami,et al.  Bayesian Estimation of Species Divergence Times Using Correlated Quantitative Characters , 2018, bioRxiv.

[146]  L. Harmon,et al.  A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data , 2014, bioRxiv.

[147]  T. Stadler,et al.  Parallel Likelihood Calculation for Phylogenetic Comparative Models: the SPLITT C++ Library , 2018, bioRxiv.

[148]  Novel Integrative Modeling of Molecules and Morphology across Evolutionary Timescales. , 2021, Systematic biology.

[149]  Daniel S. Caetano,et al.  ratematrix: An R package for studying evolutionary integration among several traits on phylogenetic trees , 2017 .

[150]  E. Hagelberg,et al.  Ancient DNA: the first three decades , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[151]  D. Silvestro,et al.  Bridging Inter- and Intraspecific Trait Evolution with a Hierarchical Bayesian Approach. , 2016, Systematic biology.

[152]  Luke J. Harmon,et al.  A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data , 2014 .

[153]  Claudia R. Solís-Lemus,et al.  Phylogenetic comparative methods on phylogenetic networks with reticulations , 2017, bioRxiv.

[154]  H. Morlon Phylogenetic approaches for studying diversification. , 2014, Ecology letters.

[155]  E. Rayfield,et al.  A virtual world of paleontology. , 2014, Trends in ecology & evolution.

[156]  J. A. Fuentes,et al.  A phylogenetic test of the Red Queen Hypothesis: Outcrossing and parasitism in the Nematode phylum , 2015, Evolution; international journal of organic evolution.

[157]  Matthew W. Hahn,et al.  Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression , 2020, bioRxiv.

[158]  H. Philippe,et al.  Computing Bayes factors using thermodynamic integration. , 2006, Systematic biology.

[159]  D. Field,et al.  Genomic Signature of an Avian Lilliput Effect across the K‐Pg Extinction , 2018, Systematic biology.

[160]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[161]  Simon Whelan,et al.  Estimating Phylogenies from Shape and Similar Multidimensional Data: Why It Is Not Reliable. , 2020, Systematic biology.

[162]  R. Bouckaert,et al.  Model Selection and Parameter Inference in Phylogenetics Using Nested Sampling , 2017, Systematic biology.

[163]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[164]  Matthew W. Hahn,et al.  Primate phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression , 2020, PLoS biology.

[165]  G. Slater Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution , 2015, Proceedings of the National Academy of Sciences.

[166]  Andrew Rambaut,et al.  Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies , 2000, Bioinform..

[167]  Tanja Stadler,et al.  Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins , 2015, Systematic biology.

[168]  P. Goloboff,et al.  Morphological Data Sets Fit a Common Mechanism Much More Poorly than DNA Sequences and Call Into Question the Mkv Model , 2018, Systematic biology.

[169]  A. Rodrigo,et al.  Measurably evolving populations , 2003 .

[170]  N. M. Koch,et al.  A Total-Evidence Dated Phylogeny of Echinoidea Combining Phylogenomic and Paleontological Data. , 2020, Systematic biology.

[171]  François Balloux,et al.  Inferences from tip‐calibrated phylogenies: a review and a practical guide , 2016, Molecular ecology.

[172]  P. Christiansen Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae) , 2013, Cladistics : the international journal of the Willi Hennig Society.

[173]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[174]  L. Bromham Why do species vary in their rate of molecular evolution? , 2009, Biology Letters.

[175]  T. Quental,et al.  Arboreality constrains morphological evolution but not species diversification in vipers , 2017, Proceedings of the Royal Society B: Biological Sciences.

[176]  A. Cooper,et al.  Reconstructing the Evolution of Giant Extinct Kangaroos: Comparing the Utility of DNA, Morphology, and Total Evidence , 2018, Systematic biology.

[177]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[178]  E. Goldberg,et al.  TEMPO AND MODE IN PLANT BREEDING SYSTEM EVOLUTION , 2012, Evolution; international journal of organic evolution.

[179]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[180]  Michael J. Landis,et al.  RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language , 2016, Systematic biology.

[181]  Matthew W. Hahn,et al.  Irrational exuberance for resolved species trees , 2016, Evolution; international journal of organic evolution.

[182]  E. Seiffert A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence , 2007, BMC Evolutionary Biology.

[183]  C. Griswold,et al.  Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae) , 2015, Invertebrate Systematics.

[184]  Pierre Alquier,et al.  Approximate Bayesian Inference , 2020, Entropy.