Characterization, Modeling and H∞ control of n-DOF Piezoelectric Actuators: application to A 3-DOF Precise Positioner
暂无分享,去创建一个
[1] Philippe Lutz,et al. Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever , 2009, IEEE Transactions on Control Systems Technology.
[2] K. Glover,et al. State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .
[3] Jim Euchner. Design , 2014, Catalysis from A to Z.
[4] Micky Rakotondrabe,et al. Robust Feedforward-Feedback Control of a Nonlinear and Oscillating 2-DOF Piezocantilever , 2011, IEEE Transactions on Automation Science and Engineering.
[5] Micky Rakotondrabe,et al. Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner , 2015, IEEE Transactions on Control Systems Technology.
[6] José L. Pons,et al. Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .
[7] Micky Rakotondrabe. Modeling and compensation of multivariable creep in multi-DOF piezoelectric actuators , 2012, 2012 IEEE International Conference on Robotics and Automation.
[8] S. Devasia,et al. Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.
[9] G. Binnig,et al. Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .
[10] S. O. Reza Moheimani,et al. A new piezoelectric tube scanner for simultaneous sensing and actuation , 2009, 2009 American Control Conference.
[11] Naoto Okihara,et al. Relay Using Multilayer Piezoelectric Actuator , 1985 .
[12] J. Doyle,et al. Essentials of Robust Control , 1997 .
[13] Jean-Marc Biannic,et al. Modélisation LFT et commande auto-séquencée. Application au pilotage d'un lanceur , 2012 .
[14] Michael Goldfarb,et al. Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .
[15] C. Su,et al. An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.
[16] S. O. Reza Moheimani,et al. A robust loop-shaping approach to fast and accurate nanopositioning , 2013 .
[17] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[18] Murti V. Salapaka,et al. Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[19] Murti V. Salapaka,et al. Design, identification and control of a fast nanopositioning device , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[20] P. Khargonekar,et al. State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.
[21] Kok Kiong Tan,et al. Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller , 2001 .
[22] Walter Tollmien,et al. Ein Gedankenmodell zur kinetischen Theorie der festen Körper , 1961 .
[23] Kok Kiong Tan,et al. Micro-positioning of linear piezoelectric motors based on a learning nonlinear PID controller , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).
[24] Hewon Jung,et al. New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep , 2000 .
[25] D. Croft,et al. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .
[26] Ephrahim Garcia,et al. A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .
[27] Ian Postlethwaite,et al. Multivariable Feedback Control: Analysis and Design , 1996 .
[28] Ian R. Petersen,et al. Robust H Infinity Control of Hysteresis in a Piezoelectric Stack Actuator , 2008 .
[29] Philippe Lutz,et al. Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control , 2015, IEEE/ASME Transactions on Mechatronics.
[30] Eric H. K. Fung,et al. Adaptive Sliding Mode Control of Piezoelectric Tube Actuator With Hysteresis, Creep and Coupling Effect , 2010 .
[31] Micky Rakotondrabe,et al. Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.
[32] Mohammad Al Janaideh,et al. A generalized asymmetric play hysteresis operator for modeling hysteresis nonlinearities of smart actuators , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.
[33] K. Leang,et al. Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner , 2012, IEEE/ASME Transactions on Mechatronics.
[34] F. Preisach. Über die magnetische Nachwirkung , 1935 .
[35] George W. Crabtree,et al. Full temperature calibration from 4 to 300 K of the voltage response of piezoelectric tube scanner PZT‐5A for use in scanning tunneling microscopes , 1993 .
[36] S. O. Reza Moheimani,et al. Reducing Cross-Coupling in a Compliant XY Nanopositioner for Fast and Accurate Raster Scanning , 2010, IEEE Transactions on Control Systems Technology.
[37] Maarten Steinbuch,et al. Modeling and compensation of asymmetric hysteresis in a piezo actuated metrological AFM , 2009, 2009 American Control Conference.
[38] Philippe Lutz,et al. Plurilinear Modeling and discrete μ-Synthesis Control of a Hysteretic and Creeped Unimorph Piezoelectric Cantilever , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.
[39] Micky Rakotondrabe. Smart Materials-Based Actuators at the Micro/Nano-Scale , 2013 .
[40] Philippe Lutz,et al. Robotic microassembly and micromanipulation at FEMTO-ST , 2013 .
[41] R. Bouc. Forced Vibration of Mechanical Systems with Hysteresis , 1967 .
[42] S. O. Reza Moheimani,et al. Two sensor based H-infinity control of a piezoelectric tube scanner , 2008 .
[43] Vi-Kwei Wen,et al. Method for random vibration hysteretics system , 1976 .
[44] Chibum Lee,et al. Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework , 2009, Nanotechnology.
[45] Mohammed Dahleh,et al. Feedback control of piezoelectric tube scanners , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[46] Philippe Lutz,et al. Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.
[47] S. O. R. Moheimani,et al. Two sensor based H∞ control of a piezoelectric tube scanner , 2008 .
[48] Philippe Lutz,et al. Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[49] P. Khargonekar,et al. State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .
[50] Santosh Devasia,et al. Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.
[51] Si-Lu Chen,et al. Discrete Composite Control of Piezoelectric Actuators for High-Speed and Precision Scanning , 2013, IEEE Transactions on Industrial Informatics.
[52] Gerber,et al. Atomic Force Microscope , 2020, Definitions.
[53] Philippe Lutz,et al. Design of a Fixed‐Order RST Controller for Interval Systems: Application to the Control of Piezoelectric Actuators , 2013 .
[54] Santosh Devasia,et al. A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.
[55] Micky Rakotondrabe. Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators , 2012, 2012 American Control Conference (ACC).
[56] P. A. McKeown,et al. A Fast Response Piezoelectric Actuator for Servo Correction of Systematic Errors in Precision Machining , 1984 .
[57] D. Croft,et al. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[58] Stefan Kuiper,et al. Model-based feedback controller design for dual actuated atomic force microscopy , 2012 .