Characterization, Modeling and H∞ control of n-DOF Piezoelectric Actuators: application to A 3-DOF Precise Positioner

This paper deals with the characterization, the modeling and the closed-loop control of multivariable piezoelectric actuators, with an application to a 3-DOF piezoelectric tube scanner, widely used in precise positioning. These actuators are typified by hysteresis and creep nonlinearities, badly damped oscillation and strong couplings between their axis. First, during the modeling, we propose to decouple the system and to use a linear model where the couplings and the two nonlinearities are integrated through an external fictive disturbance. From the obtained monovariable systems, monovariable H∞ controllers are calculated by using specifications based on model approximation. The experimental tests demonstrate the efficiency of the method to reject simultaneously the couplings, hysteresis, creep and badly damped oscillations. Furthermore, the bandwidth of the closed-loop and the open-loop systems are compared and the results show that the proposed control technique allows to achieve a convenient closed-loop bandwidth and precision for all the axis of the precise positioner.

[1]  Philippe Lutz,et al.  Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever , 2009, IEEE Transactions on Control Systems Technology.

[2]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[3]  Jim Euchner Design , 2014, Catalysis from A to Z.

[4]  Micky Rakotondrabe,et al.  Robust Feedforward-Feedback Control of a Nonlinear and Oscillating 2-DOF Piezocantilever , 2011, IEEE Transactions on Automation Science and Engineering.

[5]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Feedforward Control of Multivariable Hysteresis in Piezoelectric Systems: Application to a 3-DoF Piezotube Scanner , 2015, IEEE Transactions on Control Systems Technology.

[6]  José L. Pons,et al.  Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .

[7]  Micky Rakotondrabe Modeling and compensation of multivariable creep in multi-DOF piezoelectric actuators , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[9]  G. Binnig,et al.  Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .

[10]  S. O. Reza Moheimani,et al.  A new piezoelectric tube scanner for simultaneous sensing and actuation , 2009, 2009 American Control Conference.

[11]  Naoto Okihara,et al.  Relay Using Multilayer Piezoelectric Actuator , 1985 .

[12]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[13]  Jean-Marc Biannic,et al.  Modélisation LFT et commande auto-séquencée. Application au pilotage d'un lanceur , 2012 .

[14]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[15]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[16]  S. O. Reza Moheimani,et al.  A robust loop-shaping approach to fast and accurate nanopositioning , 2013 .

[17]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[18]  Murti V. Salapaka,et al.  Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[19]  Murti V. Salapaka,et al.  Design, identification and control of a fast nanopositioning device , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[20]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[21]  Kok Kiong Tan,et al.  Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller , 2001 .

[22]  Walter Tollmien,et al.  Ein Gedankenmodell zur kinetischen Theorie der festen Körper , 1961 .

[23]  Kok Kiong Tan,et al.  Micro-positioning of linear piezoelectric motors based on a learning nonlinear PID controller , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[24]  Hewon Jung,et al.  New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep , 2000 .

[25]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[26]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[27]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[28]  Ian R. Petersen,et al.  Robust H Infinity Control of Hysteresis in a Piezoelectric Stack Actuator , 2008 .

[29]  Philippe Lutz,et al.  Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control , 2015, IEEE/ASME Transactions on Mechatronics.

[30]  Eric H. K. Fung,et al.  Adaptive Sliding Mode Control of Piezoelectric Tube Actuator With Hysteresis, Creep and Coupling Effect , 2010 .

[31]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[32]  Mohammad Al Janaideh,et al.  A generalized asymmetric play hysteresis operator for modeling hysteresis nonlinearities of smart actuators , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[33]  K. Leang,et al.  Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner , 2012, IEEE/ASME Transactions on Mechatronics.

[34]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[35]  George W. Crabtree,et al.  Full temperature calibration from 4 to 300 K of the voltage response of piezoelectric tube scanner PZT‐5A for use in scanning tunneling microscopes , 1993 .

[36]  S. O. Reza Moheimani,et al.  Reducing Cross-Coupling in a Compliant XY Nanopositioner for Fast and Accurate Raster Scanning , 2010, IEEE Transactions on Control Systems Technology.

[37]  Maarten Steinbuch,et al.  Modeling and compensation of asymmetric hysteresis in a piezo actuated metrological AFM , 2009, 2009 American Control Conference.

[38]  Philippe Lutz,et al.  Plurilinear Modeling and discrete μ-Synthesis Control of a Hysteretic and Creeped Unimorph Piezoelectric Cantilever , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[39]  Micky Rakotondrabe Smart Materials-Based Actuators at the Micro/Nano-Scale , 2013 .

[40]  Philippe Lutz,et al.  Robotic microassembly and micromanipulation at FEMTO-ST , 2013 .

[41]  R. Bouc Forced Vibration of Mechanical Systems with Hysteresis , 1967 .

[42]  S. O. Reza Moheimani,et al.  Two sensor based H-infinity control of a piezoelectric tube scanner , 2008 .

[43]  Vi-Kwei Wen,et al.  Method for random vibration hysteretics system , 1976 .

[44]  Chibum Lee,et al.  Robust broadband nanopositioning: fundamental trade-offs, analysis, and design in a two-degree-of-freedom control framework , 2009, Nanotechnology.

[45]  Mohammed Dahleh,et al.  Feedback control of piezoelectric tube scanners , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[46]  Philippe Lutz,et al.  Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers , 2010, IEEE Transactions on Automation Science and Engineering.

[47]  S. O. R. Moheimani,et al.  Two sensor based H∞ control of a piezoelectric tube scanner , 2008 .

[48]  Philippe Lutz,et al.  Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[49]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[50]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[51]  Si-Lu Chen,et al.  Discrete Composite Control of Piezoelectric Actuators for High-Speed and Precision Scanning , 2013, IEEE Transactions on Industrial Informatics.

[52]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[53]  Philippe Lutz,et al.  Design of a Fixed‐Order RST Controller for Interval Systems: Application to the Control of Piezoelectric Actuators , 2013 .

[54]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[55]  Micky Rakotondrabe Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators , 2012, 2012 American Control Conference (ACC).

[56]  P. A. McKeown,et al.  A Fast Response Piezoelectric Actuator for Servo Correction of Systematic Errors in Precision Machining , 1984 .

[57]  D. Croft,et al.  Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[58]  Stefan Kuiper,et al.  Model-based feedback controller design for dual actuated atomic force microscopy , 2012 .