The Visual Object Tracking VOT2017 Challenge Results

The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative. Results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years. The evaluation included the standard VOT and other popular methodologies and a new "real-time" experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The VOT2017 goes beyond its predecessors by (i) improving the VOT public dataset and introducing a separate VOT2017 sequestered dataset, (ii) introducing a realtime tracking experiment and (iii) releasing a redesigned toolkit that supports complex experiments. The dataset, the evaluation kit and the results are publicly available at the challenge website1.

Michael Felsberg | Huchuan Lu | Lei Zhang | Fahad Shahbaz Khan | Wenbing Tao | Qingming Huang | Jiri Matas | Yang Li | Jingyu Liu | Houqiang Li | Guna Seetharaman | Álvaro García-Martín | Guan Huang | David Zhang | Ning Wang | José María Martínez Sanchez | Martin Danelljan | Gustav Häger | Luca Bertinetto | Roman P. Pflugfelder | Andrea Vedaldi | Ales Leonardis | Abdelrahman Eldesokey | A. Aydin Alatan | Junliang Xing | Philip H. S. Torr | Ruxandra Tapu | Bogdan Mocanu | Titus B. Zaharia | Matej Kristan | Kannappan Palaniappan | Junyu Gao | Siwei Lyu | Antoine Manzanera | Vincenzo Santopietro | Jianke Zhu | Ming-Hsuan Yang | Lijun Wang | Changsheng Xu | João F. Henriques | Longyin Wen | Qiang Wang | Richard Bowden | Dawei Du | Risheng Liu | Kris M. Kitani | Zhipeng Zhang | Lingxiao Yang | Yingruo Fan | Boyu Chen | Jack Valmadre | Chang Huang | Gorthi R. K. Sai Subrahmanyam | Payman Moallem | Erhan Gundogdu | Tianzhu Zhang | Xiao Bian | Karel Lebeda | Ondrej Miksik | Hongliang Zhang | Yifan Xing | Mahdieh Poostchi | Zheng Zhu | Qifeng Yu | Tomás Vojír | Simon Hadfield | Isabela Drummond | Andrej Muhic | Ke Gao | Wenbo Li | Wei Zou | Weiming Hu | Dalong Du | Luka Cehovin Zajc | Pedro Senna | Stuart Golodetz | Goutam Bhat | Deepak Mishra | Alan Lukezic | Alfredo Petrosino | Gustavo Fernández | Alireza Memarmoghadam | Antoine Tran | Chong Sun | Erik Velasco-Salido | Francesco Battistone | Guilherme Sousa Bastos | Jae-chan Jeong | Jaeil Cho | Jae-Yeong Lee | Jana Noskova | Jin Gao | Ji-Wan Kim | Junfei Zhuang | Kai Chen | Matthias Mueller | Mengdan Zhang | Nianhao Xie | Pallavi M. Venugopal | Rafael Martin Nieto | Sunglok Choi | Wengang Zhou | Xianguo Yu | Zhiqun He | A. Vedaldi | A. Leonardis | Longyin Wen | M. Felsberg | Martin Danelljan | R. Bowden | Jiri Matas | Siwei Lyu | Ming-Hsuan Yang | F. Khan | Huchuan Lu | Luca Bertinetto | Jack Valmadre | Chang Huang | Dalong Du | Jianke Zhu | Hongliang Zhang | Qifeng Yu | Risheng Liu | A. Manzanera | Wen-gang Zhou | Changsheng Xu | Lijun Wang | Houqiang Li | Tianzhu Zhang | Goutam Bhat | O. Miksik | Kris Kitani | Wenbo Li | Wei Zou | Weiming Hu | M. Kristan | Tomás Vojír | R. Pflugfelder | G. Fernandez | A. Petrosino | Jin Gao | Junliang Xing | Dafan Zhang | J. Sanchez | Gustav Häger | A. Lukežič | Alireza Memarmoghadam | Álvaro García-Martín | Chong Sun | Dawei Du | Deepak Mishra | Erhan Gundogdu | Francesco Battistone | G. Subrahmanyam | G. Bastos | G. Seetharaman | I. Drummond | Jae-chan Jeong | Jae-Y. Lee | Ji-Wan Kim | Junyu Gao | K. Palaniappan | K. Lebeda | Ke Gao | M. Poostchi | Matthias Mueller | Mengdan Zhang | P. Moallem | P. Senna | Qingming Huang | Simon Hadfield | S. Golodetz | Sunglok Choi | V. Santopietro | Yang Li | A. Eldesokey | A. Muhic | Antoine Tran | Aydin Alatan | B. Mocanu | Boyu Chen | Erik Velasco-Salido | Guan Huang | Jaeil Cho | J. Noskova | Jingyu Liu | Junfei Zhuang | Kai Chen | Lei Zhang | Lingxiao Yang | Nianhao Xie | Ning Wang | Q. Wang | R. Nieto | Ruxandra Tapu | T. Zaharia | Wenbing Tao | Xianguo Yu | Xiao Bian | Yifan Xing | Yingruo Fan | Zhengyu Zhu | Zhipeng Zhang | Zhiqun He | O. Mikšík | Qiang Wang | G. R. S. Subrahmanyam | L. Č. Zajc

[1]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[2]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[5]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[6]  Uwe D. Hanebeck,et al.  Template matching using fast normalized cross correlation , 2001, SPIE Defense + Commercial Sensing.

[7]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[8]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jacques Verly,et al.  The State of the Art in Multiple Object Tracking Under Occlusion in Video Sequences , 2003 .

[10]  M. Kristan,et al.  Entropy Based Measure of Camera Focus , 2004 .

[11]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[12]  J.M. Ferryman,et al.  PETS Metrics: On-Line Performance Evaluation Service , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[13]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[15]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[16]  M. Shah,et al.  Object tracking: A survey , 2006, CSUR.

[17]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[18]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[19]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[20]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[21]  Jing Zhang,et al.  Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Jiri Matas,et al.  Forward-Backward Error: Automatic Detection of Tracking Failures , 2010, 2010 20th International Conference on Pattern Recognition.

[24]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[25]  Guna Seetharaman,et al.  Efficient feature extraction and likelihood fusion for vehicle tracking in low frame rate airborne video , 2010, 2010 13th International Conference on Information Fusion.

[26]  Matej Kristan Multivariate Online Kernel Density Estimation , 2010 .

[27]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[29]  Shuicheng Yan,et al.  Dense Neighborhoods on Affinity Graph , 2011, International Journal of Computer Vision.

[30]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[31]  Jae-Yeong Lee,et al.  Visual tracking by partition-based histogram backprojection and maximum support criteria , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[32]  Jiri Matas,et al.  Robustifying the Flock of Trackers , 2011 .

[33]  Jiri Matas,et al.  Tracking the Untrackable: How to Track When Your Object Is Featureless , 2012, ACCV Workshops.

[34]  Guna Seetharaman,et al.  Robust Orientation and Appearance Adaptation for Wide-Area Large Format Video Object Tracking , 2012, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance.

[35]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[36]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[38]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[39]  Guna Seetharaman,et al.  Persistent target tracking using likelihood fusion in wide-area and full motion video sequences , 2012, 2012 15th International Conference on Information Fusion.

[40]  Guna Seetharaman,et al.  Efficient GPU Implementation of the Integral Histogram , 2012, ACCV Workshops.

[41]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[42]  Fernando De la Torre,et al.  Supervised Descent Method and Its Applications to Face Alignment , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Guna Seetharaman,et al.  Feature selection for appearance-based vehicle tracking in geospatial video , 2013, Defense, Security, and Sensing.

[44]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[45]  Jiri Matas,et al.  Robust scale-adaptive mean-shift for tracking , 2013, Pattern Recognit. Lett..

[46]  Alfredo Petrosino,et al.  MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning , 2013, ICIAP.

[47]  Haibin Ling,et al.  Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms , 2013, 2013 IEEE International Conference on Computer Vision.

[48]  Jiri Matas,et al.  Long-Term Tracking through Failure Cases , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[49]  Michael Felsberg,et al.  Enhanced Distribution Field Tracking Using Channel Representations , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[50]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Ales Leonardis,et al.  Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Dit-Yan Yeung,et al.  Ensemble-Based Tracking: Aggregating Crowdsourced Structured Time Series Data , 2014, ICML.

[53]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[54]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[55]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[56]  Jiri Matas,et al.  The Enhanced Flock of Trackers , 2014, Registration and Recognition in Images and Videos.

[57]  Ales Leonardis,et al.  Is my new tracker really better than yours? , 2014, IEEE Winter Conference on Applications of Computer Vision.

[58]  Jiri Matas,et al.  The VOT2013 challenge: overview and additional results , 2014 .

[59]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[60]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[61]  Alfredo Petrosino,et al.  Clustering Local Motion Estimates for Robust and Efficient Object Tracking , 2014, ECCV Workshops.

[62]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[63]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[64]  Stefanos Zafeiriou,et al.  Incremental Face Alignment in the Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[65]  Tony P. Pridmore,et al.  MTS: A Multiple Temporal Scale Tracker Handling Occlusion and Abrupt Motion Variation , 2014, ACCV.

[66]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  José María Martínez Sanchez,et al.  Single Object Long-term Tracker for Smart Control of a PTZ camera , 2014, ICDSC.

[68]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Hongdong Li,et al.  Tracking Randomly Moving Objects on Edge Box Proposals , 2015, ArXiv.

[70]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[71]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[72]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[73]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Atilla Baskurt,et al.  Classifying Global Scene Context for On-line Multiple Tracker Selection , 2015, BMVC.

[75]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[76]  Stefan Roth,et al.  MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking , 2015, ArXiv.

[77]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[78]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Zhenyu He,et al.  The Thermal Infrared Visual Object Tracking VOT-TIR2016 Challenge Results , 2016, ECCV Workshops.

[80]  Francesco Solera,et al.  Towards the evaluation of reproducible robustness in tracking-by-detection , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[81]  Nikos Komodakis,et al.  Learning to compare image patches via convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[84]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[85]  Tony P. Pridmore,et al.  TRIC-track: Tracking by Regression with Incrementally Learned Cascades , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[86]  Philip H. S. Torr,et al.  The Importance of Estimating Object Extent when Tracking with Correlation Filters , 2015 .

[87]  Ming Tang,et al.  Multi-kernel Correlation Filter for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[88]  Michael Felsberg,et al.  A thermal Object Tracking benchmark , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[89]  Abhinav Gupta,et al.  Transferring Rich Feature Hierarchies for Robust Visual Tracking , 2015, ArXiv.

[90]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[91]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[92]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[93]  Cordelia Schmid,et al.  Online Object Tracking with Proposal Selection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[94]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[95]  Roman P. Pflugfelder,et al.  Clustering of static-adaptive correspondences for deformable object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[96]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[97]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[98]  Jiri Matas,et al.  Texture-Independent Long-Term Tracking Using Virtual Corners , 2016, IEEE Transactions on Image Processing.

[99]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.

[100]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[101]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Silvio Savarese,et al.  Learning to Track at 100 FPS with Deep Regression Networks , 2016, ECCV.

[103]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[104]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Ales Leonardis,et al.  Visual Object Tracking Performance Measures Revisited , 2015, IEEE Transactions on Image Processing.

[106]  Ales Leonardis,et al.  Robust visual tracking using template anchors , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[107]  Jiri Matas,et al.  Online adaptive hidden Markov model for multi-tracker fusion , 2015, Comput. Vis. Image Underst..

[108]  Stefan Duffner,et al.  Using Discriminative Motion Context for Online Visual Object Tracking , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[109]  Shuicheng Yan,et al.  NUS-PRO: A New Visual Tracking Challenge , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[110]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[111]  Luca Bertinetto,et al.  End-to-End Representation Learning for Correlation Filter Based Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Ales Leonardis,et al.  Beyond Standard Benchmarks: Parameterizing Performance Evaluation in Visual Object Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[113]  Luka Cehovin TraX: The visual Tracking eXchange protocol and library , 2017, Neurocomputing.

[114]  Qiang Wang,et al.  DCFNet: Discriminant Correlation Filters Network for Visual Tracking , 2017, ArXiv.

[115]  Jiri Matas,et al.  Pixel-Wise Object Segmentations for the VOT 2016 Dataset , 2017 .

[116]  Bernard Ghanem,et al.  Context-Aware Correlation Filter Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Jiri Matas,et al.  Discriminative Correlation Filter with Channel and Spatial Reliability , 2017, CVPR.

[119]  Antoine Manzanera,et al.  Mixing Hough and Color Histogram Models for Accurate Real-Time Object Tracking , 2017, CAIP.

[120]  Changsheng Xu,et al.  Multi-task Correlation Particle Filter for Robust Object Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Isabela Drummond,et al.  Real-Time Ensemble-Based Tracker with Kalman Filter , 2017, 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).

[122]  Guna Seetharaman,et al.  Spatial pyramid context-aware moving vehicle detection and tracking in urban aerial imagery , 2017, 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[123]  A. Aydın Alatan,et al.  Good Features to Correlate for Visual Tracking , 2017, IEEE Transactions on Image Processing.

[124]  Wenbing Tao,et al.  Convolutional Regression for Visual Tracking , 2016, IEEE Transactions on Image Processing.

[125]  Changsheng Xu,et al.  Correlation Particle Filter for Visual Tracking , 2018, IEEE Transactions on Image Processing.

[126]  Ming-Hsuan Yang,et al.  Learning Spatial-Aware Regressions for Visual Tracking , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[127]  Matej Kristan,et al.  Deformable Parts Correlation Filters for Robust Visual Tracking , 2016, IEEE Transactions on Cybernetics.

[128]  Qifeng Yu,et al.  Online structural learning with dense samples and a weighting kernel , 2017, Pattern Recognit. Lett..