Real-Time Path-Generation and Path-Following Using an Interoperable Multi-Agent Framework

Autonomous unmanned vehicles are preferable in patrolling, surveillance and, search and rescue missions. Multi-agent architectures are commonly used for autonomous control of unmanned vehicles. Exi...

[1]  Thibault Gateau,et al.  A distributed architecture for supervision of autonomous multi-robot missions , 2016, Auton. Robots.

[2]  Luis Jiménez,et al.  A Multi-agent Architecture for Multi-robot Surveillance , 2009, ICCCI.

[3]  Jianda Han,et al.  Knowledge-driven path planning for mobile robots: relative state tree , 2015, Soft Comput..

[4]  Xiao Peng,et al.  Fuzzy behavior-based control of mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[5]  S.X. Yang,et al.  An efficient dynamic system for real-time robot-path planning , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  A. Matveev,et al.  Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey , 2014, Robotica.

[7]  Debasish Ghose,et al.  Obstacle avoidance in a dynamic environment: a collision cone approach , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[8]  Henrik I. Christensen,et al.  Coordination strategies for multi-robot exploration and mapping , 2014, Int. J. Robotics Res..

[9]  Nicholas R. Jennings,et al.  Near-optimal continuous patrolling with teams of mobile information gathering agents , 2013, Artif. Intell..

[10]  Jin Young Kim,et al.  Fuzzy neural networks for obstacle pattern recognition and collision avoidance of fish robots , 2008, Soft Comput..

[11]  Nicholas R. Jennings,et al.  Agent-based control systems: Why are they suited to engineering complex systems? , 2003 .

[12]  Fernando Díaz del Río,et al.  Robotics software frameworks for multi-agent robotic systems development , 2012, Robotics Auton. Syst..

[13]  N. Andrew Browning,et al.  A Neural Circuit for Robust Time-to-Contact Estimation Based on Primate MST , 2012, Neural Computation.

[14]  Alan Liu,et al.  A Flexible Architecture for Navigation Control of a Mobile Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[15]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[16]  Hyacinth S. Nwana,et al.  Software agents: an overview , 1996, The Knowledge Engineering Review.

[17]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[18]  Ching-Heng Ku,et al.  Obstacle avoidance for autonomous land vehicle navigation in indoor environments by quadratic classifier , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[20]  Alfredo Pironti,et al.  Path Generation and Tracking in 3-D for UAVs , 2009, IEEE Transactions on Control Systems Technology.

[21]  Vincent G. Ambrosia,et al.  Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use , 2012, Remote. Sens..

[22]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[23]  Timothy W. McLain,et al.  Vector Field Path Following for Miniature Air Vehicles , 2007, IEEE Transactions on Robotics.

[24]  Jean-Arcady Meyer,et al.  A contribution to vision-based autonomous helicopter flight in urban environments , 2005, Robotics Auton. Syst..

[25]  P. B. Sujit,et al.  Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicless , 2014, IEEE Control Systems.

[26]  Jonathan P. How,et al.  Performance and Lyapunov Stability of a Nonlinear Path Following Guidance Method , 2007 .