A modular dynamic simulation algorithm for complex robot systems

This paper presents a modular approach for the dynamic modelling and efficient simulation of complex robot systems composed of multiple robots constrained by multiple concurrent contacts. The modular nature of the algorithm enables existing open chain models for individual robots and other mechanisms to be incorporated without significant reprogramming, while a general contact model allows both holonomic and non-holonomic constraints in the system. In addition to the development of the dynamic equations, this paper addresses the implementation of the simulation algorithm and provides a simple example to illustrate its modularity.

[1]  Yuan F. Zheng,et al.  On the inertia duality of parallel-series connections of two robots in operational space , 1993, IEEE Trans. Robotics Autom..

[2]  Wayne J. Book,et al.  Dynamics of Two Serially Connected Manipulators , 1992 .

[3]  Frank Chongwoo Park,et al.  Simulation-based actuator selection for redundantly actuated robot mechanisms , 2002, J. Field Robotics.

[4]  Kathryn W. Jablokow,et al.  Alternate forms of the operational space inertia matrix for the dynamic simulation of complex robot systems , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[5]  F. Park,et al.  Symbolic formulation of closed chain dynamics in independent coordinates , 1999 .

[6]  Martin Otter,et al.  A very efficient algorithm for the simulation of robots and similar multibody systems without invers , 1986 .

[7]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[8]  John T. Wen,et al.  Simulation of cooperating robot manipulators on a mobile platform , 1990, IEEE Trans. Robotics Autom..

[9]  D. Orin,et al.  Efficient Dynamic Simulation of Multiple Manipulator Systems with Singular Configurations , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[10]  K. W. Lilly,et al.  Efficient Dynamic Simulation of Robotic Mechanisms , 1993 .

[11]  J. Y. S. Luh,et al.  Constrained Relations between Two Coordinated Industrial Robots for Motion Control , 1987 .

[12]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[13]  C. S. Bonaventura,et al.  An O(N) modular algorithm for the dynamic simulation of robots constrained by a single contact , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[14]  David E. Orin,et al.  Robot dynamics: equations and algorithms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  David E. Orin,et al.  Dynamic computer simulation of multiple closed-chain robotic mechanisms , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[16]  Antti J. Koivo,et al.  Modeling closed chain motion of two manipulators holding a rigid object , 1990 .

[17]  C. S. Bonaventura,et al.  A modular approach to the dynamics of complex multirobot systems , 2005, IEEE Transactions on Robotics.

[18]  L. Wang,et al.  Recursive computations of kinematic and dynamic equations for mechanical manipulators , 1985, IEEE J. Robotics Autom..

[19]  David E. Orin,et al.  Efficient Dynamic Simulation of a Quadruped Using a Decoupled Tree-Structure Approach , 1991, Int. J. Robotics Res..

[20]  John T. Wen,et al.  Motion and force control of multiple robotic manipulators , 1992, Autom..