Diverse Suppressive Influences in Area MT and Selectivity to Complex Motion Features

Neuronal selectivity results from both excitatory and suppressive inputs to a given neuron. Suppressive influences can often significantly modulate neuronal responses and impart novel selectivity in the context of behaviorally relevant stimuli. In this work, we use a naturalistic optic flow stimulus to explore the responses of neurons in the middle temporal area (MT) of the alert macaque monkey; these responses are interpreted using a hierarchical model that incorporates relevant nonlinear properties of upstream processing in the primary visual cortex (V1). In this stimulus context, MT neuron responses can be predicted from distinct excitatory and suppressive components. Excitation is spatially localized and matches the measured preferred direction of each neuron. Suppression is typically composed of two distinct components: (1) a directionally untuned component, which appears to play the role of surround suppression and normalization; and (2) a direction-selective component, with comparable tuning width as excitation and a distinct spatial footprint that is usually partially overlapping with excitation. The direction preference of this direction-tuned suppression varies widely across MT neurons: approximately one-third have overlapping suppression in the opposite direction as excitation, and many other neurons have suppression with similar direction preferences to excitation. There is also a population of MT neurons with orthogonally oriented suppression. We demonstrate that direction-selective suppression can impart selectivity of MT neurons to more complex velocity fields and that it can be used for improved estimation of the three-dimensional velocity of moving objects. Thus, considering MT neurons in a complex stimulus context reveals a diverse set of computations likely relevant for visual processing in natural visual contexts.

[1]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[2]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[4]  Alexander Thiele,et al.  Speed skills: measuring the visual speed analyzing properties of primate MT neurons , 2001, Nature Neuroscience.

[5]  B J Geesaman,et al.  Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study. , 1997, Cerebral cortex.

[6]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[7]  K. Tanaka,et al.  Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. , 1993, Journal of neurophysiology.

[8]  Marc M. Van Hulle,et al.  Function of center-surround antagonism for motion in visual area MT/V5: a modeling study , 2001, Vision Research.

[9]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[10]  R. Andersen,et al.  Center–Surround Antagonism Based on Disparity in Primate Area MT , 1998, The Journal of Neuroscience.

[11]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[12]  R. Sekuler,et al.  The independence of channels in human vision selective for direction of movement. , 1975, The Journal of physiology.

[13]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[14]  Geoffrey M. Ghose,et al.  Attention directed by expectations enhances receptive fields in cortical area MT , 2010, Vision Research.

[15]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[16]  G. Orban,et al.  Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jerry D. Nguyenkim,et al.  Disparity-Based Coding of Three-Dimensional Surface Orientation by Macaque Middle Temporal Neurons , 2003, The Journal of Neuroscience.

[18]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[19]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  S. Treue,et al.  The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns , 2005, Experimental Brain Research.

[21]  Guy A Orban,et al.  Higher order visual processing in macaque extrastriate cortex. , 2008, Physiological reviews.

[22]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[23]  Bevil R. Conway,et al.  Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex , 2006, The Journal of Neuroscience.

[24]  Alexander Borst,et al.  Spatiotemporal Response Properties of Optic-Flow Processing Neurons , 2010, Neuron.

[25]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[26]  Christopher C. Pack,et al.  Contrast sensitivity of MT receptive field centers and surrounds. , 2011, Journal of neurophysiology.

[27]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[28]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[29]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[30]  Christopher C. Pack,et al.  Contrast dependence of suppressive influences in cortical area MT of alert macaque. , 2005, Journal of neurophysiology.

[31]  L. P. O'Keefe,et al.  The influence of fixational eye movements on the response of neurons in area MT of the macaque , 1998, Visual Neuroscience.

[32]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[33]  K. H. Britten,et al.  Spatial Summation in the Receptive Fields of MT Neurons , 1999, The Journal of Neuroscience.

[34]  R. Born,et al.  Stimulus-Dependent Modulation of Suppressive Influences in MT , 2011, The Journal of Neuroscience.

[35]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[36]  D. Bradley,et al.  Velocity computation in the primate visual system , 2008, Nature Reviews Neuroscience.

[37]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[38]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[39]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[40]  R. Andersen,et al.  Encoding of three-dimensional structure-from-motion by primate area MT neurons , 1998, Nature.

[41]  Christopher C. Pack,et al.  Hierarchical processing of complex motion along the primate dorsal visual pathway , 2012, Proceedings of the National Academy of Sciences.

[42]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[43]  T. Albright,et al.  Contribution of area MT to perception of three-dimensional shape: a computational study , 1996, Vision Research.

[44]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  J. Movshon,et al.  Dynamics of Macaque MT Cell Responses to Grating Triplets , 2012, The Journal of Neuroscience.

[46]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  T. Albright,et al.  Adaptive Surround Modulation in Cortical Area MT , 2007, Neuron.

[48]  Y. Aloimonos,et al.  Direct Perception of Three-Dimensional Motion from Patterns of Visual Motion , 1995, Science.

[49]  J. Perrone,et al.  A model of self-motion estimation within primate extrastriate visual cortex , 1994, Vision Research.

[50]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[51]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[52]  M. Sahani,et al.  Nonlinearities and Contextual Influences in Auditory Cortical Responses Modeled with Multilinear Spectrotemporal Methods , 2008, The Journal of Neuroscience.

[53]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[54]  Ralf Engbert,et al.  Microsaccades are triggered by low retinal image slip. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Gallant,et al.  A Three-Dimensional Spatiotemporal Receptive Field Model Explains Responses of Area MT Neurons to Naturalistic Movies , 2011, The Journal of Neuroscience.

[56]  Thomas D. Albright,et al.  The Complex Structure of Receptive Fields in the Middle Temporal Area , 2013, Front. Syst. Neurosci..

[57]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[58]  J A Perrone,et al.  Emulating the Visual Receptive-Field Properties of MST Neurons with a Template Model of Heading Estimation , 1998, The Journal of Neuroscience.

[59]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[60]  Bart G Borghuis,et al.  Dynamics of directional selectivity in MT receptive field centre and surround , 2005, The European journal of neuroscience.

[61]  L. Paninski,et al.  Inferring input nonlinearities in neural encoding models , 2008, Network.

[62]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[63]  P. Hammond,et al.  Influence of velocity on directional tuning of complex cells in cat striate cortex for texture motion , 1980, Neuroscience Letters.

[64]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[65]  R A Andersen,et al.  Neural responses to velocity gradients in macaque cortical area MT , 1996, Visual Neuroscience.

[66]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[67]  Takahisa M. Sanada,et al.  Representation of 3-D surface orientation by velocity and disparity gradient cues in area MT. , 2012, Journal of Neurophysiology.

[68]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[69]  Florentin Wörgötter,et al.  A cortical architecture on parallel hardware for motion processing in real time. , 2010, Journal of vision.

[70]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[71]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[72]  L. Paninski,et al.  Temporal Precision in the Visual Pathway through the Interplay of Excitation and Stimulus- Driven Suppression , 2022 .

[73]  T J Sejnowski,et al.  A Model for Encoding Multiple Object Motions and Self-Motion in Area MST of Primate Visual Cortex , 1998, The Journal of Neuroscience.

[74]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[75]  C. Blakemore,et al.  Characteristics of surround inhibition in cat area 17 , 1997, Experimental Brain Research.

[76]  Duane Q Nykamp,et al.  Full identification of a linear-nonlinear system via cross-correlation analysis. , 2002, Journal of vision.