The use of ignition delay time in genetic algorithms optimisation of chemical kinetics reaction mechanisms

This study presents the use of a genetic algorithm to optimise new chemical kinetic reaction mechanisms using ignition delay time measurements. It is well recognised that many important combustion phenomena are kinetically controlled. Therefore it is important to determine accurately the reaction rate parameters associated with a given reaction mechanism. The genetic algorithm employed, uses perfectly stirred reactor, laminar premixed flame and ignition delay time data in the inversion process in order to produce efficient reaction mechanisms valid for a wide range of combustion processes and various operating conditions.

[1]  Willi Jäger,et al.  Modelling of Chemical Reaction Systems , 1981 .

[2]  Derek B. Ingham,et al.  Incorporation of physical bounds on rate parameters for reaction mechanism optimization using genetic algorithms , 2003 .

[3]  Derek B. Ingham,et al.  Optimisation of Reaction Mechanisms for Aviation Fuels Using a Multi-objective Genetic Algorithm , 2003, GECCO.

[4]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[5]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[6]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[7]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[8]  Mohamed Pourkashanian,et al.  Prediction of Premixed Laminar Flame Structure and Burning Velocity of Aviation Fuel-Air Mixtures , 2001 .

[9]  Robert J. Kee,et al.  PSE: a Fortran program for modeling well-stirred reactors , 1986 .

[10]  M. Pourkashanian,et al.  The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms , 2000 .

[11]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[12]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[13]  J. Milstein,et al.  The Inverse Problem: Estimation of Kinetic Parameters , 1981 .

[14]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.