Sandwiched Rényi divergence satisfies data processing inequality

Sandwiched (quantum) α-Renyi divergence has been recently defined in the independent works of Wilde et al. [“Strong converse for the classical capacity of entanglement-breaking channels,” preprint arXiv:1306.1586 (2013)] and Muller-Lennert et al. [“On quantum Renyi entropies: a new definition, some properties and several conjectures,” preprint arXiv:1306.3142v1 (2013)]. This new quantum divergence has already found applications in quantum information theory. Here we further investigate properties of this new quantum divergence. In particular, we show that sandwiched α-Renyi divergence satisfies the data processing inequality for all values of α > 1. Moreover we prove that α-Holevo information, a variant of Holevo information defined in terms of sandwiched α-Renyi divergence, is super-additive. Our results are based on Holder's inequality, the Riesz-Thorin theorem and ideas from the theory of complex interpolation. We also employ Sion's minimax theorem.

[1]  Salman Beigi,et al.  Impossibility of Local State Transformation via Hypercontractivity , 2013, ArXiv.

[2]  K. Audenaert A note on the p → q norms of 2-positive maps , 2009 .

[3]  F. J. Yeadon Non-commutative LP-spaces , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[5]  Serge Fehr,et al.  On quantum R\'enyi entropies: a new definition, some properties and several conjectures , 2013 .

[6]  M. Nussbaum,et al.  Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.

[7]  M. Sion On general minimax theorems , 1958 .

[8]  A. Lunardi An Introduction to Interpolation Theory , 2007 .

[9]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[10]  John Watrous,et al.  Notes on super-operator norms induced by schatten norms , 2004, Quantum Inf. Comput..

[11]  Serge Fehr,et al.  On quantum Renyi entropies: a new definition and some properties , 2013, ArXiv.

[12]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[13]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[14]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[15]  Naresh Sharma,et al.  On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.

[16]  Quanhua Xu,et al.  Complex interpolation of weighted noncommutative $L_p$-spaces , 2009, 0906.5305.

[17]  泉 英明,et al.  Non-commutative Lp-spaces〔和文〕 (作用表環論の進展) , 2000 .

[18]  C. Conde Geometric interpolation in p-Schatten class ✩ , 2008 .

[19]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[20]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[21]  K. Audenaert A Note on the p->q norms of Completely Positive Maps , 2005, math-ph/0505085.

[22]  Gilles Pisier,et al.  Chapter 34 - Non-Commutative Lp-Spaces , 2003 .

[23]  R. Bhatia Positive Definite Matrices , 2007 .

[24]  Dong Yang,et al.  Strong converse for the classical capacity of entanglement-breaking channels , 2013, ArXiv.

[25]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .