Fundamental limitation on achievable decentralized performance

A commonly accepted fact is that the diagonal structure of the decentralized controller poses fundamental limitations on the achievable performance, but few quantitative results are available for measuring these limitations. This paper provides a lower bound on the achievable quality of disturbance rejection using a decentralized controller for stable discrete time linear systems with time delays, which do not contain any finite zeros on or outside the unit circle. The proposed result is useful for assessing when full multivariable controllers can provide significantly improved performance, as compared to decentralized controllers. The results are also extended to the case, where the individual subcontrollers are restricted to be PID controllers.

[1]  V. Kariwala **,et al.  Achievable input performance of linear systems under feedback control , 2005 .

[2]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[3]  Graham C. Goodwin,et al.  Loop Performance Assessment for Decentralized Control of Stable Linear Systems , 2003, Eur. J. Control.

[4]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[5]  Karl Henrik Johansson,et al.  Decentralized control of sequentially minimum phase systems , 1999, IEEE Trans. Autom. Control..

[6]  Richard D. Braatz,et al.  Screening plant designs and control structures for uncertain systems , 1994 .

[7]  Eduardo I. Silva,et al.  Time-domain performance limitations arising from decentralized architectures and their relationship to the RGA , 2005 .

[8]  E. W. Jacobsen,et al.  Performance Limitations in Decentralized Control , 2000 .

[9]  V. Kariwala,et al.  Minimum variance benchmark for decentralized controllers , 2005, Proceedings of the 2005, American Control Conference, 2005..

[10]  Sirish L. Shah,et al.  Performance Assessment of Control Loops: Theory and Applications , 1999 .

[11]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[12]  J. Freudenberg,et al.  Frequency Domain Properties of Scalar and Multivariable Feedback Systems , 1988 .

[13]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[14]  Jie Chen,et al.  Logarithmic integrals, interpolation bounds, and performance limitations in MIMO feedback systems , 2000, IEEE Trans. Autom. Control..

[15]  Biao Huang,et al.  Performance Assessment of Control Loops , 1999 .

[16]  Sanjay Lall,et al.  A Characterization of Convex Problems in Decentralized Control$^ast$ , 2005, IEEE Transactions on Automatic Control.

[17]  H. H. Rosenbrock,et al.  Computer Aided Control System Design , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  V. Manousiouthakis,et al.  Best achievable decentralized performance , 1995, IEEE Trans. Autom. Control..

[19]  Edward S. Meadows,et al.  Integrity of systems under decentralized integral control , 2005, Autom..

[20]  G. Zames,et al.  Multivariable feedback, sensitivity, and decentralized control , 1983 .