Kinematic Synthesis of Spatial Serial Chains Using Clifford Algebra Exponentials

Abstract This article presents a formulation of the design equations for a spatial serial chain that uses the Clifford algebra exponential form of its kinematics equations. This is the even Clifford algebra C +(P 3), known as dual quaternions. These equations define the position and orientation of the end effector in terms of rotations or translations about or along the joint axes of the chain. Because the coordinates of these axes appear explicitly, specifying a set of task positions these equations can be solved to determine the location of the joints. At the same time, joint parameters or certain dimensions are specified to ensure that the resulting robotic system has specific features.

[1]  Alba Perez,et al.  Geometric design of RRP, RPR and PRR serial chains , 2005 .

[2]  Layne T. Watson,et al.  Generalized Linear Product Homotopy Algorithms and the Computation of Reachable Surfaces , 2004, J. Comput. Inf. Sci. Eng..

[3]  Damien Chablat,et al.  An Interval Analysis Based Study for the Design and the Comparison of Three-Degrees-of-Freedom Parallel Kinematic Machines , 2004, Int. J. Robotics Res..

[4]  Clément Gosselin,et al.  Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations , 2004 .

[5]  Glen Mullineux,et al.  Modeling spatial displacements using Clifford algebra , 2004 .

[6]  Constantinos Mavroidis,et al.  Geometric design of spatial PRR manipulators , 2004 .

[7]  Constantinos Mavroidis,et al.  Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation , 2002 .

[8]  Eduardo Bayro-Corrochano,et al.  Motor Algebra for 3D Kinematics: The Case of the Hand-Eye Calibration , 2000, Journal of Mathematical Imaging and Vision.

[9]  McCarthy,et al.  Geometric Design of Linkages , 2000 .

[10]  Philippe Wenger,et al.  Some guidelines for the kinematic design of new manipulators , 2000 .

[11]  J. M. Hervé The Lie group of rigid body displacements, a fundamental tool for mechanism design , 1999 .

[12]  Kostas Daniilidis,et al.  Hand-Eye Calibration Using Dual Quaternions , 1999, Int. J. Robotics Res..

[13]  L. W. Tsai,et al.  Robot Analysis: The Mechanics of Serial and Parallel Ma-nipulators , 1999 .

[14]  Joseph Duffy,et al.  Kinematic analysis of robot manipulators: Index , 1998 .

[15]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[16]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[17]  K. C. Gupta Kinematic Analysis of Manipulators Using the Zero Reference Position Description , 1986 .

[18]  Lung-Wen Tsai,et al.  Design of Dyads with helical, cylindrical, spherical, revolute and prismatic joints , 1972 .

[19]  C. Suh,et al.  On the Duality in the Existence of R-R Links for Three Positions , 1969 .

[20]  Bernard Roth,et al.  Design Equations for the Finitely and Infinitesimally Separated Position Synthesis of Binary Links and Combined Link Chains , 1969 .

[21]  G. N. Sandor,et al.  Principles of a General Quaternion-Operator Method of Spatial Kinematic Synthesis , 1968 .

[22]  Hai-Jun Su,et al.  SYNTHETICA 2.0: SOFTWARE FOR THE SYNTHESIS OF CONSTRAINED SERIAL CHAINS , 2004 .

[23]  J. Michael McCarthy,et al.  Dual quaternion synthesis of constrained robotic systems , 2003 .

[24]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[25]  C. H. Suh,et al.  Kinematics and mechanisms design , 1978 .