Kinematics in the metric space

Abstract This paper proposes a general method for driving kinematics by distances and more specifically for controlling kinematically articulated systems. Unlike traditional approaches, the problem is addressed in the metric space using distances belonging to points of the skeleton and to the environment. After defining kinematic control through a distance-based formalization, we propose an optimization method for solving classic issues such as motion adaptation and inverse kinematics. The originality of the method lies in the possibility to introduce distance constraints with priorities. The approach is validated by a large variety of experiments in the field of motion control of articulated figures, and compared to other approaches by means of stability, convergence and performance issues.

[1]  Jörg Peters,et al.  AlgorithmXXX: Efficient Atlasing and Search of Configuration Spaces of Point-Sets Constrained by Distance Intervals , 2018, ArXiv.

[2]  Di Wu,et al.  An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data , 2003, J. Glob. Optim..

[3]  Ariel Shamir,et al.  Inverse Kinematics Techniques in Computer Graphics: A Survey , 2018, Comput. Graph. Forum.

[4]  Meekyoung Kim,et al.  Motion retargeting to preserve spatial relationship between skinned characters , 2017, Symposium on Computer Animation.

[5]  Yiming Yang,et al.  Real-time motion adaptation using relative distance space representation , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[6]  Daniel Thalmann,et al.  Interactive low-dimensional human motion synthesis by combining motion models and PIK , 2007 .

[7]  Søren Hauberg,et al.  Predicting Articulated Human Motion from Spatial Processes , 2011, International Journal of Computer Vision.

[8]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[9]  Nicolas Courty,et al.  Skeletal mesh animation driven by few positional constraints , 2019, Comput. Animat. Virtual Worlds.

[10]  Nicolas Courty,et al.  Spatiotemporal coupling with the 3D+t motion Laplacian , 2013, Comput. Animat. Virtual Worlds.

[11]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[12]  Timothy F. Havel Distance Geometry: Theory, Algorithms, and Chemical Applications , 2002 .

[13]  Taku Komura,et al.  Relationship descriptors for interactive motion adaptation , 2013, SCA '13.

[14]  J. G. Jalón Twenty-five years of natural coordinates , 2007 .

[15]  A. A. Maciejewsk Dealing with the Ill-Conditioned Epuations of Motion for Articulated Figures , 1990 .

[16]  Taku Komura,et al.  Spatial relationship preserving character motion adaptation , 2010, SIGGRAPH 2010.

[17]  Hans-Peter Seidel,et al.  A volumetric approach to interactive shape editing , 2007 .

[18]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[19]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[20]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.

[21]  Christophe Jermann,et al.  Modélisation géométrique par contraintes , 2007 .

[22]  Taku Komura,et al.  Character contact re‐positioning under large environment deformation , 2016, Comput. Graph. Forum.

[23]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[24]  Chih-Cheng Chen,et al.  A combined optimization method for solving the inverse kinematics problems of mechanical manipulators , 1991, IEEE Trans. Robotics Autom..

[25]  Ronan Boulic,et al.  Full-body performance animation with Sequential Inverse Kinematics , 2008, Graph. Model..

[26]  Ronan Boulic,et al.  Interactive motion deformation with prioritized constraints , 2004, SCA '04.

[27]  Norman I. Badler,et al.  Interactive real-time articulated figure manipulation using multiple kinematic constraints , 1990, I3D '90.

[28]  Hubert P. H. Shum,et al.  Motion adaptation for humanoid robots in constrained environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[29]  Franck Multon,et al.  A distance-based approach for human posture simulations , 2017, 2017 Federated Conference on Computer Science and Information Systems (FedCSIS).

[30]  Kwang-Jin Choi,et al.  Online motion retargetting , 2000, Comput. Animat. Virtual Worlds.

[31]  Hubert P. H. Shum,et al.  Emulating human perception of motion similarity , 2008 .

[32]  Sylvie Gibet,et al.  Modeling Joint Synergies to Synthesize Realistic Movements , 2009, Gesture Workshop.

[33]  W. Wolovich,et al.  A computational technique for inverse kinematics , 1984, The 23rd IEEE Conference on Decision and Control.

[34]  Katsu Yamane,et al.  Natural Motion Animation through Constraining and Deconstraining at Will , 2003, IEEE Trans. Vis. Comput. Graph..

[35]  Sergio Ausejo,et al.  An optimization method for overdetermined kinematic problems formulated with natural coordinates , 2011 .

[36]  Leo Liberti,et al.  A parallel version of the Branch & Prune algorithm for the Molecular Distance Geometry Problem , 2010, ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010.

[37]  Leo Liberti,et al.  Molecular distance geometry methods: from continuous to discrete , 2010, Int. Trans. Oper. Res..

[38]  Sylvie Gibet,et al.  Cinématique guidée par les distances , 2012 .

[39]  Francisco J. Perales López,et al.  Adding Image Constraints to Inverse Kinematics for Human Motion Capture , 2010, EURASIP J. Adv. Signal Process..

[40]  Ronan Boulic,et al.  Motion constraint , 2009, The Visual Computer.

[41]  Norman I. Badler,et al.  Inverse kinematics positioning using nonlinear programming for highly articulated figures , 1994, TOGS.

[42]  Bruno Arnaldi,et al.  Morphology‐independent representation of motions for interactive human‐like animation , 2005, Comput. Graph. Forum.

[43]  Chris Hecker,et al.  Real-time motion retargeting to highly varied user-created morphologies , 2008, SIGGRAPH 2008.

[44]  Michael W. Berry,et al.  Large-Scale Sparse Singular Value Computations , 1992 .

[45]  Daniel Thalmann,et al.  A robust approach for the control of the center of mass with inverse kinetics , 1996, Comput. Graph..

[46]  Bruno Arnaldi,et al.  Through-the-eyes control of a virtual humanoid , 2001, Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No.01TH8596).

[47]  Andreas Aristidou,et al.  Extending FABRIK with model constraints , 2016, Comput. Animat. Virtual Worlds.

[48]  Anthony A. Maciejewski,et al.  Dealing with the ill-conditioned equations of motion for articulated figures , 1990, IEEE Computer Graphics and Applications.

[49]  Nicolas Courty,et al.  Inverse Kinematics Using Sequential Monte Carlo Methods , 2008, AMDO.

[50]  Nicolas Courty,et al.  Fast Motion Retrieval with the Distance Input Space , 2012, MIG.

[51]  H. Scheraga,et al.  Solution of the embedding problem and decomposition of symmetric matrices. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Menghan Wang,et al.  How the Beast really moves: Cayley analysis of mechanism realization spaces using CayMos , 2014, Comput. Aided Des..

[53]  Andreas Aristidou,et al.  FABRIK: A fast, iterative solver for the Inverse Kinematics problem , 2011, Graph. Model..

[54]  Taku Komura,et al.  Character Motion Synthesis by Topology Coordinates , 2009, Comput. Graph. Forum.

[55]  Kenny Erleben,et al.  Solving inverse kinematics using exact Hessian matrices , 2019, Comput. Graph..

[56]  Li Han,et al.  Inverse Kinematics for a Serial Chain with Joints Under Distance Constraints , 2006, Robotics: Science and Systems.