Multi-linear Secret-Sharing Schemes

Multi-linear secret-sharing schemes are the most common secret-sharing schemes. In these schemes the secret is composed of some field elements and the sharing is done by applying some fixed linear mapping on the field elements of the secret and some randomly chosen field elements. If the secret contains one field element, then the scheme is called linear. The importance of multi-linear schemes is that they provide a simple non-interactive mechanism for computing shares of linear combinations of previously shared secrets. Thus, they can be easily used in cryptographic protocols.

[1]  K. Srinathan,et al.  Alternative Protocols for Generalized Oblivious Transfer , 2008, ICDCN.

[2]  Hans Zassenhaus,et al.  Über endliche Fastkörper , 1935 .

[3]  Wang Wei On the least prime in an arithmetic progression , 1991 .

[4]  Stefan H. M. van Zwam,et al.  Skew partial fields, multilinear representations of matroids, and a matrix tree theorem , 2013, Adv. Appl. Math..

[5]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[6]  Carles Padró,et al.  On secret sharing schemes, matroids and polymatroids , 2006, J. Math. Cryptol..

[7]  G. R. Blakley,et al.  Safeguarding cryptographic keys , 1899, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[8]  W. Scott,et al.  Group Theory. , 1964 .

[9]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[10]  Hung-Min Sun,et al.  Decomposition Construction for Secret Sharing Schemes with Graph Access Structures in Polynomial Time , 2010, SIAM J. Discret. Math..

[11]  Mitsuru Ito,et al.  Multiple assignment scheme for sharing secret , 1993, Journal of Cryptology.

[12]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[13]  Triantafyllos Xylouris On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions , 2011 .

[14]  P. S. Aleksandrov,et al.  An introduction to the theory of groups , 1960 .

[15]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[16]  Shafi Goldwasser,et al.  Advances in Cryptology — CRYPTO’ 88: Proceedings , 1990, Lecture Notes in Computer Science.

[17]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[18]  Georges Vincent,et al.  Les groupes linéaires finis sans points fixes , 1947 .

[19]  Bart Preneel,et al.  Advances in cryptology - EUROCRYPT 2000 : International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000 : proceedings , 2000 .

[20]  Moni Naor,et al.  Access Control and Signatures via Quorum Secret Sharing , 1998, IEEE Trans. Parallel Distributed Syst..

[21]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[22]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[23]  Ingemar Ingemarsson,et al.  A Construction of Practical Secret Sharing Schemes using Linear Block Codes , 1992, AUSCRYPT.

[24]  P. MuraliKrishna,et al.  SECURE SCHEMES FOR SECRET SHARING AND KEY DISTRIBUTION USING PELL'S EQUATION , 2013 .

[25]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[26]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[27]  Yvo Desmedt,et al.  Shared Generation of Authenticators and Signatures (Extended Abstract) , 1991, CRYPTO.

[28]  Joan Feigenbaum,et al.  Advances in Cryptology-Crypto 91 , 1992 .

[29]  Anna Gál A characterization of span program size and improved lower bounds for monotone span programs , 1998, STOC '98.

[30]  Pavel Pudlák,et al.  A note on monotone complexity and the rank of matrices , 2003, Inf. Process. Lett..

[31]  Marten van Dijk,et al.  A General Decomposition Construction for Incomplete Secret Sharing Schemes , 1998, Des. Codes Cryptogr..

[32]  James G. Oxley,et al.  Matroid theory , 1992 .

[33]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[34]  Tamir Tassa,et al.  Generalized oblivious transfer by secret sharing , 2011, Des. Codes Cryptogr..

[35]  Marten van Dijk,et al.  Improved constructions of secret sharing schemes by applying (lambda, omega)-decompositions , 2006, Inf. Process. Lett..

[36]  Fredrik Meyer,et al.  Representation theory , 2015 .

[37]  Thomas A. Dowling,et al.  A class of geometric lattices based on finite groups , 1973 .

[38]  È. Vinberg,et al.  Spaces of constant curvature , 1993 .

[39]  Marcos K. Aguilera,et al.  Distributed Computing and Networking , 2011, Lecture Notes in Computer Science.

[40]  Frantisek Matús,et al.  Matroid representations by partitions , 1999, Discret. Math..

[41]  Douglas R. Stinson,et al.  Decomposition constructions for secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[42]  Marten van Dijk A Linear Construction of Secret Sharing Schemes , 1997, Des. Codes Cryptogr..

[43]  Alfredo De Santis,et al.  Graph decompositions and secret sharing schemes , 2004, Journal of Cryptology.

[44]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[45]  Rosario Gennaro,et al.  Public Key Cryptography - PKC 2011 - 14th International Conference on Practice and Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings , 2011, Public Key Cryptography.

[46]  Alexei E. Ashikhmin,et al.  Almost Affine Codes , 1998, Des. Codes Cryptogr..

[47]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.

[48]  Graham J. O. Jameson The basic theorems , 2003 .

[49]  Ueli Maurer,et al.  General Secure Multi-party Computation from any Linear Secret-Sharing Scheme , 2000, EUROCRYPT.

[50]  Brent Waters,et al.  Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization , 2011, Public Key Cryptography.

[51]  R. Pendavingh,et al.  Representing some non-representable matroids , 2011, 1106.3088.

[52]  Jennifer Seberry,et al.  Advances in Cryptology — AUSCRYPT '92 , 1992, Lecture Notes in Computer Science.

[53]  Brent Waters,et al.  Attribute-based encryption for fine-grained access control of encrypted data , 2006, CCS '06.

[54]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[55]  Charles Semple,et al.  Partial Fields and Matroid Representation , 1996 .

[56]  T. A. Dowling A q-Analog of the Partition Lattice††t The research reported here was partially supported by the Air Force Office of Scientific Research under Contract AFOSR-68-1415. , 1973 .

[57]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[58]  Avi Wigderson,et al.  Superpolynomial Lower Bounds for Monotone Span Programs , 1996, Comb..