Problem Solving by Searching for Models with a Theorem Prover

Abstract Given a problem described as a set of rules or constraints, finding solutions that satisfy these constraints is a central task in the area of artificial intelligence. We present a theorem prover that can solve a problem by searching for models. The problem representation it accepts is in first-order logic which is fully declarative. The solutions obtained are logical consequences of the constraints, so they are correct. Negative information can be asserted and processed correctly. Finally, if the problem has multiple solutions, all of them can be found.

[1]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[2]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[3]  J. Dekleer An assumption-based TMS , 1986 .

[4]  William McCune,et al.  OTTER 1.0 Users' Guide , 1990 .

[5]  Rina Dechter,et al.  Network-based heuristics for constraint satisfaction problems , 1988 .

[6]  Eugene C. Freuder Synthesizing constraint expressions , 1978, CACM.

[7]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[8]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[9]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[10]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[11]  David A. Plaisted,et al.  New applications of a fast propositional calculus decision procedure , 1990 .

[12]  Johan de Kleer,et al.  Problem Solving with the ATMS , 1986, Artif. Intell..

[13]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[14]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[15]  T. Larrabee Efficient generation of test patterns using Boolean satisfiability , 1990 .

[16]  David A. Plaisted Complete Problems in the First-Order Predicate Calculus , 1984, J. Comput. Syst. Sci..

[17]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[18]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[19]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[20]  David A. Plaisted,et al.  Use of replace rules in theorem proving , 1994, Methods Log. Comput. Sci..

[21]  Harry R. Lewis,et al.  Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..

[22]  Zvi Galil,et al.  On the Complexity of Regular Resolution and the Davis-Putnam Procedure , 1977, Theor. Comput. Sci..

[23]  David A. McAllester An Outlook on Truth Maintenance. , 1980 .

[24]  Leon Sterling,et al.  The Art of Prolog , 1987, IEEE Expert.

[25]  Johan de Kleer,et al.  A Comparison of ATMS and CSP Techniques , 1989, IJCAI.

[26]  J. A. Robinson,et al.  Theorem-Proving on the Computer , 1963, JACM.