Local equilibrium controllability of multibody systems controlled via shape change

We study local equilibrium controllability of shape controlled multibody systems. The multibody systems are defined on a trivial principal fiber bundle by a Lagrangian that characterizes the base body motion and shape dynamics. A potential dependent on an advected parameter, e.g., uniform gravitational potential, is considered. This potential breaks base body symmetries, but a symmetry subgroup is assumed to exist. Symmetric product formulas are derived and important properties are obtained for symmetric products of horizontal shape control vector fields and a potential vector field that is dependent on an advected parameter. Based on these properties, sufficient conditions for local equilibrium controllability and local fiber equilibrium controllability are developed. These results are applied to two classes of shape controlled multibody systems in a uniform gravitational field: multibody attitude systems and neutrally buoyant multibody underwater vehicles.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  H. Sussmann Lie Brackets and Local Controllability: A Sufficient Condition for Scalar-Input Systems , 1983 .

[3]  Naomi Ehrich Leonard,et al.  Model-based feedback control of autonomous underwater gliders , 2001 .

[4]  H. Sussmann A general theorem on local controllability , 1987 .

[5]  A. D. Lewis,et al.  When is a mechanical control system kinematic? , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[6]  P. Crouch,et al.  Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models , 1984 .

[7]  Jerrold E. Marsden,et al.  Symmetries in Motion: Geometric Foundations of Motion Control , 1998 .

[8]  F. Bullo,et al.  On nonlinear controllability and series expansions for Lagrangian systems with dissipative forces , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[9]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[10]  N. Harris McClamroch,et al.  Translational and Rotational Maneuvers of an Underactuated Space Robot using Prismatic Actuators , 2002, Int. J. Robotics Res..

[11]  Henry Hermes Large-Time Local Controllability Via Homogeneous Approximations , 1996 .

[12]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[13]  Arjan van der Schaft,et al.  Dynamics and control of a class of underactuated mechanical systems , 1999, IEEE Trans. Autom. Control..

[14]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[15]  James P. Ostrowski Steering for a class of dynamic nonholonomic systems , 2000, IEEE Trans. Autom. Control..

[16]  N. McClamroch,et al.  Mathematical Models for the Triaxial Attitude Control Testbed , 2003 .

[17]  Kevin M. Lynch,et al.  Controllability of a planar body with unilateral thrusters , 1999, IEEE Trans. Autom. Control..

[18]  H. Zhang,et al.  Simple Mechanical Control Systems with Constraints and Symmetry , 2002, SIAM J. Control. Optim..

[19]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[20]  Li-Chen Fu,et al.  Controllability of spacecraft systems in a central gravitational field , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[21]  David Schneider Non-holonomic Euler-Poincare´ equations and stability in Chaplygin's sphere , 2002 .

[22]  A. D. Lewis Local configuration controllability for a class of mechanical systems with a single input , 1997, 1997 European Control Conference (ECC).

[23]  Jinglai Shen,et al.  NONLINEAR CONTROL OF MULTIBODY SYSTEMS WITH SYMMETRIES VIA SHAPE CHANGE , 2002 .

[24]  Ilya V. Kolmanovsky,et al.  Nonlinear attitude and shape control of spacecraft with articulated appendages and reaction wheels , 2000, IEEE Trans. Autom. Control..

[25]  Richard M. Murray,et al.  Controllability of simple mechanical control systems , 1997 .

[26]  Naomi Ehrich Leonard,et al.  Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..

[27]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[28]  P. Krishnaprasad,et al.  Controllability of Lie-Poisson reduced dynamics , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[29]  Gianna Stefani,et al.  Controllability along a trajectory: a variational approach , 1993 .

[30]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[31]  Jerrold E. Marsden,et al.  Reduction theory and the Lagrange-Routh equations , 2000 .

[32]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[33]  Francesco Bullo,et al.  Series Expansions for the Evolution of Mechanical Control Systems , 2001, SIAM J. Control. Optim..

[34]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[35]  Andrew D. Lewis,et al.  Simple mechanical control systems with constraints , 2000, IEEE Trans. Autom. Control..

[36]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[37]  Joel W. Burdick,et al.  Controllability of kinematic control systems on stratified configuration spaces , 2001, IEEE Trans. Autom. Control..

[38]  J. Ostrowski The mechanics and control of undulatory robotic locomotion , 1995 .

[39]  Naomi Ehrich Leonard,et al.  Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry , 1997 .

[40]  A. Bloch,et al.  ON THE DYNAMICS AND CONTROL OF NONHOLONOMIC SYSTEMS ON RIEMANNIAN MANIFOLDS , 1992 .

[41]  A. D. Lewis,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997 .

[42]  P. Crouch,et al.  Controllability on principal fibre bundles with compact structure group , 1984 .

[43]  Jerrold E. Marsden,et al.  Asymptotic stabilization of the heavy top using controlled Lagrangians , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[44]  Naomi Ehrich Leonard,et al.  Global asymptotic stabilization of an underwater vehicle using internal rotors , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[45]  Francesco Bullo,et al.  On mechanical control systems with nonholonomic constraints and symmetries , 2002, Syst. Control. Lett..

[46]  Peter E. Crouch,et al.  Geometric structures in systems theory , 1981 .

[47]  James P. Ostrowski,et al.  Control Algorithms Using Affine Connections on Principal Fiber Bundles , 2000 .