Deep Active Inference and Scene Construction

Adaptive agents must act in intrinsically uncertain environments with complex latent structure. Here, we elaborate a model of visual foraging – in a hierarchical context – wherein agents infer a higher-order visual pattern (a ‘scene’) by sequentially sampling ambiguous cues. Inspired by previous models of scene construction – that cast perception and action as consequences of approximate Bayesian inference – we use active inference to simulate decisions of agents categorizing a scene in a hierarchically-structured setting. Under active inference, agents develop probabilistic beliefs about their environment, while actively sampling it to maximise the evidence for their internal generative model. This approximate evidence maximization (i.e. self-evidencing) comprises drives to both maximise rewards and resolve uncertainty about hidden states. This is realised via minimization of a free energy functional of posterior beliefs about both the world as well as the actions used to sample or perturb it, corresponding to perception and action, respectively. We show that active inference, in the context of hierarchical scene construction, gives rise to many empirical evidence accumulation phenomena, such as noise-sensitive reaction times and epistemic saccades. We explain these behaviours in terms of the principled drives that constitute the expected free energy, the key quantity for evaluating policies under active inference. In addition, we report novel behaviours exhibited by these active inference agents that furnish new predictions for research on evidence accumulation and perceptual decision-making. We discuss the implications of this hierarchical active inference scheme for tasks that require planned sequences of information-gathering actions to infer compositional latent structure (such as visual scene construction and sentence comprehension). Finally, we propose experiments to contextualise active inference in relation to other formulations of evidence accumulation (e.g. drift-diffusion models) in tasks that require planning in uncertain environments with higher-order structure.

[1]  Raymond J. Dolan,et al.  Dopamine, reward learning, and active inference , 2015, Front. Comput. Neurosci..

[2]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[3]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[4]  J. Wolfowitz,et al.  Optimum Character of the Sequential Probability Ratio Test , 1948 .

[5]  Karl J. Friston,et al.  Uncertainty, epistemics and active inference , 2017, Journal of The Royal Society Interface.

[6]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Karl J. Friston,et al.  Corrigendum to "Active inference and epistemic value" [Cognitive Neuroscience, 6 (2015), 187-214. doi: 10.1080/17588928.2015.1020053] , 2016 .

[8]  Emanuel Todorov,et al.  General duality between optimal control and estimation , 2008, 2008 47th IEEE Conference on Decision and Control.

[9]  P König,et al.  Active Sensing -Closing Multiple Loops , 1998, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[10]  Roger Ratcliff,et al.  The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.

[11]  Karl J. Friston,et al.  The active construction of the visual world , 2017, Neuropsychologia.

[12]  Anil K. Seth,et al.  The cybernetic Bayesian brain: from interoceptive inference to sensorimotor contingencies , 2014 .

[13]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[14]  Pierre-Yves Oudeyer,et al.  Eye movements reveal epistemic curiosity in human observers , 2015, Vision Research.

[15]  Martial Mermillod,et al.  Differential effects of visual uncertainty and contextual guidance on perceptual decisions: Evidence from eye and mouse tracking in visual search. , 2016, Journal of vision.

[16]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[17]  Karl J. Friston,et al.  Impulsivity and Active Inference , 2019, Journal of Cognitive Neuroscience.

[18]  Karl J. Friston,et al.  Precision and False Perceptual Inference , 2018, Front. Integr. Neurosci..

[19]  Karl J. Friston,et al.  Active inference and oculomotor pursuit: The dynamic causal modelling of eye movements , 2015, Journal of Neuroscience Methods.

[20]  Jonathan D. Cohen,et al.  The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. , 2006, Psychological review.

[21]  Árni Kristjánsson,et al.  Visual foraging and executive functions: A developmental perspective. , 2019, Acta psychologica.

[22]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  M. Shadlen,et al.  The effect of stimulus strength on the speed and accuracy of a perceptual decision. , 2005, Journal of vision.

[24]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[26]  Jeffrey N. Rouder,et al.  Modeling Response Times for Two-Choice Decisions , 1998 .

[27]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[28]  Nicholas C. Foley,et al.  Novelty Enhances Visual Salience Independently of Reward in the Parietal Lobe , 2014, The Journal of Neuroscience.

[29]  Karl J. Friston,et al.  The graphical brain: Belief propagation and active inference , 2017, Network Neuroscience.

[30]  Raymond J. Dolan,et al.  The anatomy of choice: active inference and agency , 2013, Front. Hum. Neurosci..

[31]  Karl J. Friston What Is Optimal about Motor Control? , 2011, Neuron.

[32]  Karl J. Friston Hierarchical Models in the Brain , 2008, PLoS Comput. Biol..

[33]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[34]  Karl J. Friston,et al.  Hierarchical Active Inference: A Theory of Motivated Control , 2018, Trends in Cognitive Sciences.

[35]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Karl J. Friston,et al.  Active inference and epistemic value , 2015, Cognitive neuroscience.

[37]  R. Gregory Perceptions as hypotheses. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  Pierre-Yves Oudeyer,et al.  Towards a neuroscience of active sampling and curiosity , 2018, Nature Reviews Neuroscience.

[39]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[40]  James L. McClelland,et al.  Are there mental lexicons? The role of semantics in lexical decision , 2010, Brain Research.

[41]  Mark Rowlands,et al.  The New Science of the Mind: From Extended Mind to Embodied Phenomenology , 2010 .

[42]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[43]  Karl J. Friston,et al.  Perceptions as Hypotheses: Saccades as Experiments , 2012, Front. Psychology.

[44]  Karl J. Friston A free energy principle for a particular physics , 2019, 1906.10184.

[45]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[46]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  Simon McGregor,et al.  The free energy principle for action and perception: A mathematical review , 2017, 1705.09156.

[48]  Karl J. Friston,et al.  Introducing a Bayesian model of selective attention based on active inference , 2019, Scientific Reports.

[49]  Karl J. Friston,et al.  The Markov blankets of life: autonomy, active inference and the free energy principle , 2018, Journal of The Royal Society Interface.

[50]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[51]  Daniel A. Levinthal,et al.  Exploration and Exploitation in Organizational Learning , 2007 .

[52]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[53]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[54]  Susan M. Garnsey,et al.  Semantic Influences On Parsing: Use of Thematic Role Information in Syntactic Ambiguity Resolution , 1994 .

[55]  Christoph W Korn,et al.  A solid frame for the window on cognition: Modeling event-related pupil responses. , 2016, Journal of vision.

[56]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[57]  Martin Rolfs,et al.  Attention in Active Vision: A Perspective on Perceptual Continuity Across Saccades , 2015, Perception.

[58]  Karl J. Friston,et al.  Active inference and agency: optimal control without cost functions , 2012, Biological Cybernetics.

[59]  Karl J. Friston,et al.  Active Inference: A Process Theory , 2017, Neural Computation.

[60]  Karl J. Friston,et al.  Neuronal message passing using Mean-field, Bethe, and Marginal approximations , 2019, Scientific Reports.

[61]  Karl J. Friston,et al.  A Free Energy Principle for Biological Systems. , 2012, Entropy.

[62]  Karl J. Friston,et al.  Attention or salience? , 2019, Current opinion in psychology.

[63]  Srini Narayanan,et al.  Bayesian Models of Human Sentence Processing , 1998 .

[64]  K. Nakayama,et al.  Temporal and spatial characteristics of the upper displacement limit for motion in random dots , 1984, Vision Research.

[65]  Rafal Bogacz,et al.  A tutorial on the free-energy framework for modelling perception and learning , 2017, Journal of mathematical psychology.

[66]  Karl J. Friston,et al.  Computational mechanisms of curiosity and goal-directed exploration , 2018, bioRxiv.

[67]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[68]  Karl J. Friston,et al.  The Functional Anatomy of Time: What and When in the Brain , 2016, Trends in Cognitive Sciences.

[69]  Philipp Schwartenbeck,et al.  Computational mechanisms of curiosity and goal-directed exploration , 2019, eLife.

[70]  Anil K. Seth,et al.  Being a Beast Machine: The Somatic Basis of Selfhood , 2018, Trends in Cognitive Sciences.

[71]  H. Helmholtz Handbuch der physiologischen Optik , 2015 .

[72]  Karl J. Friston,et al.  Generalised free energy and active inference , 2018, Biological Cybernetics.

[73]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[74]  Karl J. Friston,et al.  The Anatomy of Inference: Generative Models and Brain Structure , 2018, Front. Comput. Neurosci..

[75]  O. Seeberg Statistical Mechanics. — A Set of Lectures , 1975 .

[76]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[77]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[78]  Karl J. Friston,et al.  Reinforcement Learning or Active Inference? , 2009, PloS one.

[79]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[80]  Jürgen Schmidhuber,et al.  Curious model-building control systems , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[81]  K. H. Britten,et al.  Responses of neurons in macaque MT to stochastic motion signals , 1993, Visual Neuroscience.

[82]  Stefan J. Kiebel,et al.  A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making , 2017, Front. Comput. Neurosci..

[83]  Manuel Lopes,et al.  Parietal neurons encode expected gains in instrumental information , 2017, Proceedings of the National Academy of Sciences.

[84]  Antoine Lutti,et al.  Investigating the functions of subregions within anterior hippocampus , 2015, Cortex.

[85]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[86]  A. Clark Whatever next? Predictive brains, situated agents, and the future of cognitive science. , 2013, The Behavioral and brain sciences.

[87]  Karl J. Friston,et al.  Answering Schrödinger's question: A free-energy formulation , 2017, Physics of life reviews.

[88]  Chrystopher L. Nehaniv,et al.  Empowerment: a universal agent-centric measure of control , 2005, 2005 IEEE Congress on Evolutionary Computation.

[89]  Matthew A Lambon Ralph,et al.  What’s in a word? A parametric study of semantic influences on visual word recognition , 2012, Psychonomic Bulletin & Review.

[90]  Jonathan D. Cohen,et al.  Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences: 359 (1451) , 2004 .

[91]  Stefan J. Kiebel,et al.  Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model , 2014, Front. Hum. Neurosci..

[92]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[93]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[94]  Scott Cheng-Hsin Yang,et al.  Active sensing in the categorization of visual patterns , 2016, eLife.

[95]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[96]  Julie C. Sedivy,et al.  Subject Terms: Linguistics Language Eyes & eyesight Cognition & reasoning , 1995 .

[97]  Christoph Salge,et al.  Expanding the Active Inference Landscape: More Intrinsic Motivations in the Perception-Action Loop , 2018, Front. Neurorobot..

[98]  Brian A Wandell,et al.  Cone signal interactions in direction-selective neurons in the middle temporal visual area (MT). , 2005, Journal of vision.

[99]  Rajesh P. N. Rao,et al.  Predictive Coding , 2019, A Blueprint for the Hard Problem of Consciousness.

[100]  Karl J. Friston,et al.  Active Inference, Curiosity and Insight , 2017, Neural Computation.

[101]  Scott Cheng-Hsin Yang,et al.  Theoretical perspectives on active sensing , 2016, Current Opinion in Behavioral Sciences.

[102]  Karl J. Friston,et al.  Deep temporal models and active inference , 2017, Neuroscience & Biobehavioral Reviews.

[103]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[104]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[105]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[106]  M. Lopes,et al.  Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates , 2016, Scientific Reports.

[107]  Karl J. Friston,et al.  The Discrete and Continuous Brain: From Decisions to Movement—And Back Again , 2018, Neural Computation.

[108]  Stefano Panzeri,et al.  Distinct timescales of population coding across cortex , 2017, Nature.

[109]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[110]  Hilbert J. Kappen,et al.  Risk Sensitive Path Integral Control , 2010, UAI.

[111]  Karl J. Friston,et al.  Human visual exploration reduces uncertainty about the sensed world , 2018, PloS one.

[112]  Árni Kristjánsson,et al.  Visual Foraging With Fingers and Eye Gaze , 2016, i-Perception.

[113]  Nicholas J. Butko,et al.  Active perception , 2010 .

[114]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[115]  Karl J. Friston,et al.  Dynamic Causal Modelling of Active Vision , 2019, The Journal of Neuroscience.

[116]  Pierre-Yves Oudeyer,et al.  Motivated Cognition: Neural and Computational Mechanisms of Curiosity, Attention, and Intrinsic Motivation , 2016 .

[117]  Karl J. Friston,et al.  Scene Construction, Visual Foraging, and Active Inference , 2016, Front. Comput. Neurosci..

[118]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[119]  Peter Elias,et al.  Predictive coding-I , 1955, IRE Trans. Inf. Theory.