Modelling and control of an omnidirectional mobile manipulator

Abstract A new approach to control an omnidirectional mobile manipulator is developed. The robot is considered to be an individual agent aimed at performing robotic tasks described in terms of a displacement and a force interaction with the environment. A reactive architecture and impedance control are used to ensure reliable task execution in response to environment stimuli. The mechanical structure of our holonomic mobile manipulator is built of two joint manipulators mounted on a holonomic vehicle. The vehicle is equipped with three driven axles with two spherical orthogonal wheels. Taking into account the dynamical interaction between the base and the manipulator, one can define the dynamics of the mobile manipulator and design a nonlinear controller using the input-state linearization method. The control structure of the robot is built in order to demonstrate the main capabilities regarding navigation and obstacle avoidance. Several simulations were conducted to prove the effectiveness of this approach.

[1]  Keiichiro Hoashi,et al.  Humanoid Robots in Waseda University—Hadaly-2 and WABIAN , 2002, Auton. Robots.

[2]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[3]  Abderraouf Benali,et al.  Modelling and feedback control of an omni-directional mobile manipulator , 2011, 2011 IEEE International Conference on Automation Science and Engineering.

[4]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Cyril Novales,et al.  Omni-directional robot with spherical orthogonal wheels: concepts and analyses , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  François G. Pin,et al.  A new family of omnidirectional and holonomic wheeled platforms for mobile robots , 1994, IEEE Trans. Robotics Autom..

[7]  Xiaoping Yun,et al.  Control and coordination of locomotion and manipulation of a wheeled mobile manipulator , 1994 .

[8]  Jun Ota,et al.  Motion Planning of Multiple Mobile Robots Using Virtual Impedance , 1993, J. Robotics Mechatronics.

[9]  M. Sugeno,et al.  Fuzzy Control of Model Car , 1985 .

[10]  KEIGO WATANABE,et al.  Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots , 1998, J. Intell. Robotic Syst..

[11]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[12]  Khier Benmahammed,et al.  A Two-Layer Robot Controller Design Using Evolutionary Algorithms , 2001, J. Intell. Robotic Syst..

[13]  Eric Monacelli,et al.  A learning paradigm for motion control of mobile manipulators , 2006 .

[14]  L. Siciliano Modelling and Control of Robot Manipulators , 2000 .

[15]  Eric Monacelli,et al.  A fuzzy-based reactive controller for a non-holonomic mobile robot , 2004, Robotics Auton. Syst..

[16]  Oussama Khatib,et al.  Coordination and decentralized cooperation of multiple mobile manipulators , 1996, J. Field Robotics.

[17]  Masayuki Inaba,et al.  Development of a humanoid robot Saika , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[18]  P. Coiffet Modelling and Control , 1983 .

[19]  Vicente Mut,et al.  Algorithms for stable control of mobile robots with obstacle avoidance , 1999 .

[20]  Michio Sugeno,et al.  Fuzzy Control of Model Car , 1985 .

[21]  Andrew A. Goldenberg Implementation of force and impedance control in robot manipulators , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[22]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[23]  Volker Graefe,et al.  HERMES - a versatile personal robotic assistant , 2004, Proceedings of the IEEE.

[24]  Neville Hogan,et al.  Impedance control - An approach to manipulation. I - Theory. II - Implementation. III - Applications , 1985 .

[25]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[26]  Salima Djebrani,et al.  Multi-agent prototyping for a cooperative carrying task , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[27]  Abderraouf Benali,et al.  Input-State Linearisation of an Omni-Directional mobile Robot , 2010 .

[28]  Abderraouf Benali,et al.  Force-position control of a holonomic mobile manipulator , 2009 .

[29]  Paolo Gallina,et al.  Dynamic model with slip for wheeled omnidirectional robots , 2002, IEEE Trans. Robotics Autom..

[30]  Frank L. Lewis,et al.  Decentralized continuous robust controller for mobile robots , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[31]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[32]  Kazuhiro Kosuge,et al.  Mobile robot helper , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[33]  Robert O. Ambrose,et al.  Mobile manipulation using NASA's Robonaut , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[34]  Abderraouf Benali,et al.  A Multi-Agent Strategy for a Simple Cooperative Behavior , 2010, Int. J. Inf. Acquis..

[35]  Albert Albers,et al.  Upper Body of a new Humanoid Robot - the Design of ARMAR III , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[36]  A. Isidori Nonlinear Control Systems , 1985 .

[37]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[38]  Bernard Bayle Modélisation et commande cinématique des manipulateurs mobiles à roues , 2001 .

[39]  Georges Bastin,et al.  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1996, IEEE Trans. Robotics Autom..