Characterising heavy-tailed networks using q-generalised entropy and q-adjacency kernels

[1]  A. Sala,et al.  Feature-rich networks: going beyond complex network topologies , 2019, Appl. Netw. Sci..

[2]  Ismo T. Koponen,et al.  Modelling Students’ Thematically Associated Knowledge: Networked Knowledge from Affinity Statistics , 2019, Complex Networks X.

[3]  P. Holme Rare and everywhere: Perspectives on scale-free networks , 2019, Nature Communications.

[4]  Andrea Torsello,et al.  Can a Quantum Walk Tell Which Is Which?A Study of Quantum Walk-Based Graph Similarity , 2019, Entropy.

[5]  I. Koponen,et al.  Network cartography of university students’ knowledge landscapes about the history of science: landmarks and thematic communities , 2019, Appl. Netw. Sci..

[6]  James P. Bagrow,et al.  An information-theoretic, all-scales approach to comparing networks , 2018, Applied Network Science.

[7]  Aaron Clauset,et al.  Scale-free networks are rare , 2018, Nature Communications.

[8]  Kieran J. Sharkey,et al.  A control analysis perspective on Katz centrality , 2017, Scientific Reports.

[9]  Eduardo G. Altmann,et al.  Using text analysis to quantify the similarity and evolution of scientific disciplines , 2017, Royal Society Open Science.

[10]  A. Plastino,et al.  On the putative essential discreteness of q-generalized entropies , 2017, 1704.08380.

[11]  Manlio De Domenico,et al.  Complex networks from classical to quantum , 2017, Communications Physics.

[12]  Eduardo G. Altmann,et al.  Generalized entropies and the similarity of texts , 2016, ArXiv.

[13]  Manlio De Domenico,et al.  Spectral entropies as information-theoretic tools for complex network comparison , 2016, 1609.01214.

[14]  Eduardo G. Altmann,et al.  On the similarity of symbol frequency distributions with heavy tails , 2015, ArXiv.

[15]  Shigeru Furuichi,et al.  On Some Properties of Tsallis Hypoentropies and Hypodivergences , 2014, Entropy.

[16]  Rajeev K. Azad,et al.  Generalization of Entropy Based Divergence Measures for Symbolic Sequence Analysis , 2014, PloS one.

[17]  Christopher T. Kello,et al.  Walking across Wikipedia: a scale-free network model of semantic memory retrieval , 2014, Front. Psychol..

[18]  Michele Benzi,et al.  On the Limiting Behavior of Parameter-Dependent Network Centrality Measures , 2013, SIAM J. Matrix Anal. Appl..

[19]  C. Bauckhage,et al.  Spectral evolution in dynamic networks , 2013, Knowledge and Information Systems.

[20]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[21]  Michele Benzi,et al.  MATRIX FUNCTIONS , 2006 .

[22]  Michele Benzi,et al.  The Physics of Communicability in Complex Networks , 2011, ArXiv.

[23]  Emilio Hernández-García,et al.  Wikipedia Information Flow Analysis Reveals the Scale-Free Architecture of the Semantic Space , 2011, PloS one.

[24]  Kristina Lerman,et al.  A Parameterized Centrality Metric for Network Analysis , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Eric P. Xing,et al.  Nonextensive Information Theoretic Kernels on Measures , 2009, J. Mach. Learn. Res..

[26]  Ernesto Estrada,et al.  Communicability betweenness in complex networks , 2009, 0905.4102.

[27]  Matthias Dehmer,et al.  Information processing in complex networks: Graph entropy and information functionals , 2008, Appl. Math. Comput..

[28]  A. Fronczak,et al.  Fluctuation-dissipation relations in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  S. Abe Temperature of nonextensive systems: Tsallis entropy as Clausius entropy , 2005, cond-mat/0504036.

[30]  S. Abe Quantum q-divergence , 2004 .

[31]  C. Tsallis,et al.  Generalized entropy arising from a distribution of q indices. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  G. Caldarelli,et al.  Vertex intrinsic fitness: how to produce arbitrary scale-free networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  S. Abe,et al.  Validity of the second law in nonextensive quantum thermodynamics. , 2003, Physical review letters.

[35]  S. Abe Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification , 2003, quant-ph/0301136.

[36]  M. A. Muñoz,et al.  Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.

[37]  T. Yamano Some properties of q-logarithm and q-exponential functions in Tsallis statistics , 2002 .

[38]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[39]  Ernesto P. Borges On a q -generalization of circular and hyperbolic functions , 1998 .

[40]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[41]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[42]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[43]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[44]  I. Koponen,et al.  University Students' Associative Knowledge of History of Science: Matthew Effect in Action?. , 2018 .

[45]  Lael J. Schooler,et al.  Mapping the Structure of Semantic Memory , 2013, Cogn. Sci..

[46]  Matthias Dehmer,et al.  A history of graph entropy measures , 2011, Inf. Sci..

[47]  Tony White,et al.  The Structure of Complex Networks , 2011 .

[48]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[49]  Gábor Szabó,et al.  Structure of complex networks , 2005 .

[50]  Stephen P. Borgatti,et al.  Centrality and network flow , 2005, Soc. Networks.