A statistical approach to 3d object detection applied to faces and cars

In this thesis, we describe a statistical method for 3D object detection. In this method, we decompose the 3D geometry of each object into a small number of viewpoints. For each viewpoint, we construct a decision rule that determines if the object is present at that specific orientation. Each decision rule uses the statistics of both object appearance and “non-object” visual appearance. We represent each set of statistics using a product of histograms. Each histogram represents the joint statistics of a subset of wavelet coefficients and their position on the object. Our approach is to use many such histograms representing a wide variety of visual attributes. Using this method, we have developed the first algorithm that can reliably detect faces that vary from frontal view to full profile view and the first algorithm that can reliably detect cars over a wide range of viewpoints.

[1]  H. Bastian Sensation and Perception.—I , 1869, Nature.

[2]  Herman H. Goldstine,et al.  The Jacobi Method for Real Symmetric Matrices , 1959, JACM.

[3]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[4]  J. Frisby Seeing: Illusion, Brain and Mind , 1979 .

[5]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[6]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[7]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[8]  M. Lévesque Perception , 1986, The Yale Journal of Biology and Medicine.

[9]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry, Expanded Edition , 1987 .

[11]  Tim Niblett,et al.  Constructing Decision Trees in Noisy Domains , 1987, EWSL.

[12]  Tony R. Martinez,et al.  Digital Neural Networks , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[13]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[14]  李幼升,et al.  Ph , 1989 .

[15]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[16]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[17]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[18]  Neil Gershenfeld,et al.  MIT-Media Lab , 1991, ICMC.

[19]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Igor Kononenko,et al.  Semi-Naive Bayesian Classifier , 1991, EWSL.

[21]  Raimund Seidel,et al.  Efficiently Computing and Representing Aspect Graphs of Polyhedral Objects , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[23]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[24]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[26]  B V Kumar,et al.  Tutorial survey of composite filter designs for optical correlators. , 1992, Applied optics.

[27]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[29]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[30]  S. Sutherland Eye, brain and vision , 1993, Nature.

[31]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[34]  Katsushi Ikeuchi,et al.  Sensor Modeling, Probabilistic Hypothesis Generation, and Robust Localization for Object Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  M. M. Moya,et al.  Cueing, feature discovery, and one-class learning for synthetic aperture radar automatic target recognition , 1995, Neural Networks.

[36]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[37]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[38]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[39]  Abhijit S. Pandya,et al.  Pattern Recognition with Neural Networks in C++ , 1995 .

[40]  David P. Casasent,et al.  Classifier and shift-invariant automatic target recognition neural networks , 1995, Neural Networks.

[41]  Alex Pentland,et al.  Probabilistic visual learning for object detection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[42]  Pietro Perona,et al.  Recognition of planar object classes , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Christian Goerick,et al.  Artificial neural networks in real-time car detection and tracking applications , 1996, Pattern Recognit. Lett..

[44]  John Krumm,et al.  Eigenfeatures for planar pose measurement of partially occluded objects , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[45]  Katsushi Ikeuchi,et al.  Recognition of the multi-specularity objects using the eigen-window , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[46]  Harry Wechsler,et al.  Detection of human faces using decision trees , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[47]  Pamela C. Cosman,et al.  Vector quantization of image subbands: a survey , 1996, IEEE Trans. Image Process..

[48]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[49]  Paul A. Viola Complex Feature Recognition: A Bayesian Approach for Learning to Recognize Objects , 1996 .

[50]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[51]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[56]  Thomas S. Huang,et al.  Face detection with information-based maximum discrimination , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Franco Scarselli,et al.  Are Multilayer Perceptrons Adequate for Pattern Recognition and Verification? , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[61]  L. Breiman Arcing Classifiers , 1998 .

[62]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[63]  Takeo Kanade,et al.  Probabilistic modeling of local appearance and spatial relationships for object recognition , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[64]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[65]  Tomaso Poggio,et al.  A Trainable Object Detection System: Car Detection in Static Images , 1999 .

[66]  Narendra Ahuja,et al.  A SNoW-Based Face Detector , 1999, NIPS.

[67]  Paul A. Viola,et al.  A cluster-based statistical model for object detection , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[68]  Alex Pentland,et al.  Probabilistic object recognition and localization , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[69]  Tommi S. Jaakkola,et al.  Maximum Entropy Discrimination , 1999, NIPS.

[70]  David J. Field,et al.  Wavelets, vision and the statistics of natural scenes , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[71]  Rama Chellappa,et al.  Higher order statistical learning for vehicle detection in images , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[72]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[73]  Refractor Vision , 2000, The Lancet.

[74]  emontmej,et al.  High Performance Computing , 2003, Lecture Notes in Computer Science.