On single electron technology full adders

This paper reviews several full adder (FA) designs in single electron technology (SET). In addition to the structure and size already reported for these SET FAs, this paper provides a quantitative and qualitative comparison in terms of delay, power dissipation, and sensitivity to (process) variations - for the first time. This can allow for a better understanding of the advantages and disadvantages of each solution. A new SET FA design, based on capacitive SET threshold logic gates, is described and compared with the other SET FAs.

[1]  Hiroshi Inokawa,et al.  Binary adders of multigate single-electron transistors: specific design using pass-transistor logic , 2002 .

[2]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[3]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[4]  Zahid A. K. Durrani,et al.  Room temperature nanocrystalline silicon single-electron transistors , 2003 .

[5]  Christoph Wasshuber,et al.  A single-electron device and circuit simulator , 1997 .

[6]  John R. Tucker,et al.  Complementary digital logic based on the ``Coulomb blockade'' , 1992 .

[7]  Stamatis Vassiliadis,et al.  A full adder implementation using SET based linear threshold gates , 2002, 9th International Conference on Electronics, Circuits and Systems.

[8]  Yoshihito Amemiya,et al.  Single-Electron Majority Logic Circuits , 1997 .

[9]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[10]  Yasunobu Nakamura,et al.  Room-temperature Al single-electron transistor made by electron-beam lithography , 2000 .

[11]  Siegfried Selberherr,et al.  SIMON-A simulator for single-electron tunnel devices and circuits , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Ken Uchida,et al.  Room-temperature operation of multifunctional single-electron transistor logic , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[13]  T. W. Kim,et al.  Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam , 2002 .

[14]  David J. Frank,et al.  Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..

[15]  E.J. Nowak,et al.  Turning silicon on its edge [double gate CMOS/FinFET technology] , 2004, IEEE Circuits and Devices Magazine.

[16]  Valeriu Beiu,et al.  Split-Precharge Differential Noise-Immune Threshold Logic Gate (SPD-NTL) , 2003, IWANN.

[17]  A. Toriumi,et al.  Silicon single-electron memory and logic devices for room temperature operation , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[18]  Kazuo Yano,et al.  Room-temperature single-electron memory , 1994 .

[19]  José Fernández Ramos,et al.  Two Operand Binary Adders with Threshold Logic , 1999, IEEE Trans. Computers.

[20]  K. Banerjee,et al.  SETMOS: a novel true hybrid SET-CMOS high current Coulomb blockade oscillation cell for future nano-scale analog ICs , 2003, IEEE International Electron Devices Meeting 2003.

[21]  C. Lageweg,et al.  Single electron encoded latches and flip-flops , 2004, IEEE Transactions on Nanotechnology.

[22]  Niraj K. Jha,et al.  Threshold network synthesis and optimization and its application to nanotechnologies , 2005 .

[23]  Randall L. Geiger,et al.  A new current mirror layout technique for improved matching characteristics , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[24]  S. Roy,et al.  Majority multiplexing-economical redundant fault-tolerant designs for nanoarchitectures , 2005, IEEE Transactions on Nanotechnology.

[25]  Valeriu Beiu,et al.  Characterization of a 16-bit threshold logic single-electron technology adder , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[26]  Valeriu Beiu,et al.  High-speed noise robust threshold gates , 2000, 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486).

[27]  Randall L. Geiger,et al.  Gradient sensitivity reduction in current mirrors with non-rectangular layout structures , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[28]  Valeriu Beiu A novel highly reliable low-power nano architecture when von Neumann augments Kolmogorov , 2004 .

[29]  Sreedhar Natarajan,et al.  SOI Design: Analog, Memory and Digital Techniques , 2001 .

[30]  Ken Uchida,et al.  Programmable single-electron transistor logic for future low-power intelligent LSI: proposal and room-temperature operation , 2003 .

[31]  Tetsuya Asai,et al.  A majority-logic device using an irreversible single-electron box , 2003 .

[32]  Tarek Darwish,et al.  Performance analysis of low-power 1-bit CMOS full adder cells , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[33]  Stamatis Vassiliadis,et al.  Static buffered SET based logic gates , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[34]  Ki-Whan Song,et al.  Realistic single-electron transistor modeling and novel CMOS/SET hybrid circuits , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[35]  V. Beiu,et al.  Design and analysis of SET circuits: using MATLAB modules and SIMON , 2004, 4th IEEE Conference on Nanotechnology, 2004..