Multifrequency channel decompositions of images and wavelet models

The author reviews recent multichannel models developed in psychophysiology, computer vision, and image processing. In psychophysiology, multichannel models have been particularly successful in explaining some low-level processing in the visual cortex. The expansion of a function into several frequency channels provides a representation which is intermediate between a spatial and a Fourier representation. The author describes the mathematical properties of such decompositions and introduces the wavelet transform. He reviews the classical multiresolution pyramidal transforms developed in computer vision and shows how they relate to the decomposition of an image into a wavelet orthonormal basis. He discusses the properties of the zero crossings of multifrequency channels. Zero-crossing representations are particularly well adapted for pattern recognition in computer vision. >

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[3]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[4]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[5]  F. Campbell,et al.  Visibility of aperiodic patterns compared with that of sinusoidal gratings , 1969, The Journal of physiology.

[6]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[7]  J. Kulikowski,et al.  Spatial arrangement of line, edge and grating detectors revealed by subthreshold summation. , 1973, Vision research.

[8]  J. Kulikowski,et al.  Orientational selectivity of grating and line detectors in human vision. , 1973, Vision research.

[9]  J. Nachmias,et al.  Discrimination of simple and complex gratings , 1975, Vision Research.

[10]  Theodosios Pavlidis,et al.  A hierarchical data structure for picture processing , 1975 .

[11]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[12]  E. Hall,et al.  Hierarchical search for image matching , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[13]  A. Rosenfeld Coarse-fine template matching , 1977 .

[14]  D. Esteban,et al.  Application of quadrature mirror filters to split band voice coding schemes , 1977 .

[15]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[16]  G. Sandini,et al.  Responses of visual cortical cells to periodic and non‐periodic stimuli. , 1979, The Journal of physiology.

[17]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  E. Yund,et al.  Responses of striate cortex cells to grating and checkerboard patterns. , 1979, The Journal of physiology.

[19]  D. Pollen,et al.  Relationship between spatial frequency selectivity and receptive field profile of simple cells. , 1979, The Journal of physiology.

[20]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[21]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  C. Blakemore,et al.  Orientation Selectivity of the Human Visual System as a Function of Retinal Eccentricity and Visual Hemifield , 1981, Perception.

[23]  L.R. Rabiner,et al.  Interpolation and decimation of digital signals—A tutorial review , 1981, Proceedings of the IEEE.

[24]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[26]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[27]  John Daugman,et al.  Six formal properties of two-dimensional anisotropie visual filters: Structural principles and frequency/orientation selectivity , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[29]  T. Poggio Vision by man and machine. , 1984, Scientific American.

[30]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[31]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[32]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  R. L. de Valois,et al.  Relationship between spatial-frequency and orientation tuning of striate-cortex cells. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[34]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[35]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[36]  Yehoshua Y. Zeevi,et al.  Image reconstruction from zero crossings , 1986, IEEE Trans. Acoust. Speech Signal Process..

[37]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[38]  John W. Woods,et al.  Subband coding of images , 1986, IEEE Trans. Acoust. Speech Signal Process..

[39]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[40]  Jae S. Lim,et al.  Advanced topics in signal processing , 1987 .

[41]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[42]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[43]  A B Watson,et al.  Efficiency of a model human image code. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[44]  P. Federbush Quantum field theory in ninety minutes , 1987 .

[45]  Edward H. Adelson,et al.  Orthogonal Pyramid Transforms For Image Coding. , 1987, Other Conferences.

[46]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[47]  P. Tchamitchian Biorthogonalité et Théorie des Opérateurs , 1987 .

[48]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[49]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[50]  Stephane G Mallat,et al.  Dyadic Wavelets Energy Zero-Crossings , 1988 .

[51]  Y. Meyer,et al.  Bases d'ondelettes dans des ouverts de Rn , 1989 .

[52]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .