Learning models from data: the set membership approach

The problem of identifying complex linear systems from noise corrupted data is investigated, considering that only approximate models can be estimated and the effects of unmodeled dynamics have to be accounted for. The paper presents a unified view of the set membership identification theory, as recently evolved by the author et al. (1997), aiming to deliver not only a model of the system to be identified, but also a measure of its approximation. Optimality and convergence results are reported, related to identification problems for different settings of experimental conditions and noise assumptions.

[1]  R. Tempo,et al.  Optimal algorithms theory for robust estimation and prediction , 1985 .

[2]  L. Ljung,et al.  Asymptotic properties of black-box identification of transfer functions , 1985 .

[3]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[4]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[5]  Antonio Vicino,et al.  Optimal error and GMDH predictors: A comparison with some statistical techniques , 1987 .

[6]  Antonio Vicino,et al.  Conditionally optimal algorithms and estimation of reduced order models , 1988, J. Complex..

[7]  H. Woxniakowski Information-Based Complexity , 1988 .

[8]  J. Tsitsiklis,et al.  Optimal asymptotic identification under bounded disturbances , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[9]  J. Partington Robust identification and interpolation in H , 1991 .

[10]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[11]  Guoxiang Gu,et al.  A class of algorithms for identification in H∞ , 1992, Autom..

[12]  John N. Tsitsiklis,et al.  Optimal asymptotic identification under bounded disturbances , 1993, IEEE Trans. Autom. Control..

[13]  Antonio Vicino,et al.  Information-Based Complexity and Nonparametric Worst-Case System Identification , 1993, J. Complex..

[14]  G. Zames,et al.  Fast identification n-widths and uncertainty principles for LTI and slowly varying systems , 1994, IEEE Trans. Autom. Control..

[15]  R. G. Hakvoort,et al.  System identification for rubust process control. Nominal models and error bounds , 1994 .

[16]  P. V. D. Hof,et al.  System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[17]  Håkan Hjalmarsson,et al.  Some Reflections on Control Design Based on Experimental Data , 1994 .

[18]  Håkan Hjalmarson,et al.  A Unifying View of Disturbances in Identification , 1994 .

[19]  Hüseyin Akçay,et al.  The Least-Squares Identification of Fir Systems Subject to Worst-Case Noise , 1994 .

[20]  Graham C. Goodwin,et al.  Estimation of model quality , 1994, Autom..

[21]  P. Mäkilä,et al.  Worst-case analysis of the least-squares method and related identification methods , 1995 .

[22]  P.M. Mäkilä,et al.  Worst-case control-relevant identification , 1995, Autom..

[23]  Massimo Canale,et al.  Model quality evaluation in identification for control , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[24]  Paul M. J. Van den Hof,et al.  Quantification of uncertainty in transfer function estimation: a mixed probabilistic-worst-case approach , 1995, Autom..

[25]  Lennart Ljung,et al.  Estimating the Total Error from Standard Model Validation Tests , 1996 .

[26]  Mario Milanese,et al.  H/sub /spl infin// identification of "soft" uncertainty models , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[27]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[28]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[29]  Raymond A. de Callafon,et al.  Control-Relevant Uncertainty Modelling Directed Towards Performance Robustness , 1996 .

[30]  L. Giarre,et al.  SM identification of approximating models for H/sub /spl infin// robust control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[31]  Massimo Canale,et al.  Model Structure Selection in Identification for Control , 1996 .

[32]  Mario Milanese,et al.  H∞ identification and model quality evaluation , 1997, IEEE Trans. Autom. Control..

[33]  Laura Giarré,et al.  Model quality evaluation in set membership identification , 1997, Autom..

[34]  Mario Milanese,et al.  Robust Design of Low Order Controllers via Uncertainty Model Identification , 1997 .

[35]  Andrea Garulli,et al.  Conditional central algorithms for worst-case estimation and filtering , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[36]  M. Milanese,et al.  Closed-loop identification of uncertainty models for robust control design: a set membership approach , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[37]  Mathukumalli Vidyasagar,et al.  A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems , 1997 .

[38]  /spl alpha/-optimality evaluation in H/sub /spl infin// identification of low-order uncertainty models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[39]  Mario Milanese,et al.  Convergence Properties in H∞ Identification with Approximated Models , 1997 .

[40]  Massimo Canale,et al.  Model quality evaluation in identification for H∞ control , 1998, IEEE Trans. Autom. Control..

[41]  Uncertainty model identification for H/sub /spl infin// robust control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[42]  Mario Milanese,et al.  SM identification of approximating models for H∞ robust control , 1999 .

[43]  M. Milanese,et al.  H∞ identification of “soft” uncertainty models , 1999 .