VLSI Architectures for Soft-Decision Decoding of Reed–Solomon Codes
暂无分享,去创建一个
[1] Madhu Sudan,et al. Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..
[2] Alexander Vardy,et al. Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.
[3] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[4] Tom Høholdt,et al. Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .
[5] Neil Weste,et al. Principles of CMOS VLSI Design , 1985 .
[6] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.
[7] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[8] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[9] Frank R. Kschischang,et al. A VLSI architecture for interpolation in soft-decision list decoding of Reed-Solomon codes , 2002, IEEE Workshop on Signal Processing Systems.
[10] Ron M. Roth,et al. Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.
[11] Keshab K. Parhi,et al. Custom VLSI design of efficient low latency and low power finite field multiplier for Reed-Solomon codec , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).
[12] Alexander Vardy,et al. Efficient interpolation and factorization in algebraic soft-decision decoding of reed-solonion codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[13] Naresh R. Shanbhag,et al. High-speed architectures for Reed-Solomon decoders , 2001, IEEE Trans. Very Large Scale Integr. Syst..
[14] J.L. Massey,et al. Theory and practice of error control codes , 1986, Proceedings of the IEEE.
[15] Trieu-Kien Truong,et al. Fast algorithm for computing the roots of error locator polynomials up to degree 11 in Reed-Solomon decoders , 2001, IEEE Trans. Commun..
[16] Keshab K. Parhi,et al. VLSI digital signal processing systems , 1999 .
[17] Robert T. Chien,et al. Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes , 1964, IEEE Trans. Inf. Theory.
[18] Christof Paar,et al. A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields , 1996, IEEE Trans. Computers.
[19] Gui Liang Feng,et al. A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.