VLSI Architectures for Soft-Decision Decoding of Reed–Solomon Codes

Soft-decision decoding of Reed-Solomon codes delivers significant coding gains over classical minimum distance decoding. In this paper, we present architectures for polynomial interpolation and factorization, the two main steps of the soft-decoding algorithm. We introduce an algorithmic transformation for reducing the iterations required in generating the interpolation polynomial and present efficient architectures by sharing computations. We also describe algorithmic transformations for further reducing the interpolation and factorization latency. An area efficient, folded-pipelined version of the interpolation architecture is also described. Finally, we present an example of a Reed-Solomon soft decoder utilizing the presented architectures, having a 250 Mbps throughput.

[1]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[2]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[3]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[4]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[5]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[6]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[7]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[8]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[9]  Frank R. Kschischang,et al.  A VLSI architecture for interpolation in soft-decision list decoding of Reed-Solomon codes , 2002, IEEE Workshop on Signal Processing Systems.

[10]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[11]  Keshab K. Parhi,et al.  Custom VLSI design of efficient low latency and low power finite field multiplier for Reed-Solomon codec , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[12]  Alexander Vardy,et al.  Efficient interpolation and factorization in algebraic soft-decision decoding of reed-solonion codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[13]  Naresh R. Shanbhag,et al.  High-speed architectures for Reed-Solomon decoders , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[14]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[15]  Trieu-Kien Truong,et al.  Fast algorithm for computing the roots of error locator polynomials up to degree 11 in Reed-Solomon decoders , 2001, IEEE Trans. Commun..

[16]  Keshab K. Parhi,et al.  VLSI digital signal processing systems , 1999 .

[17]  Robert T. Chien,et al.  Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes , 1964, IEEE Trans. Inf. Theory.

[18]  Christof Paar,et al.  A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields , 1996, IEEE Trans. Computers.

[19]  Gui Liang Feng,et al.  A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.