Structure-Based Suggestive Exploration: A New Approach for Effective Exploration of Large Networks

When analyzing a visualized network, users need to explore different sections of the network to gain insight. However, effective exploration of large networks is often a challenge. While various tools are available for users to explore the global and local features of a network, these tools usually require significant interaction activities, such as repetitive navigation actions to follow network nodes and edges. In this paper, we propose a structure-based suggestive exploration approach to support effective exploration of large networks by suggesting appropriate structures upon user request. Encoding nodes with vectorized representations by transforming information of surrounding structures of nodes into a high dimensional space, our approach can identify similar structures within a large network, enable user interaction with multiple similar structures simultaneously, and guide the exploration of unexplored structures. We develop a web-based visual exploration system to incorporate this suggestive exploration approach and compare performances of our approach under different vectorizing methods and networks. We also present the usability and effectiveness of our approach through a controlled user study with two datasets.

[1]  Mario Vento,et al.  An Improved Algorithm for Matching Large Graphs , 2001 .

[2]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[3]  Stuart K. Card,et al.  Degree-of-interest trees: a component of an attention-reactive user interface , 2002, AVI '02.

[4]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[5]  Hai Jin,et al.  Top-k Similarity Matching in Large Graphs with Attributes , 2014, DASFAA.

[6]  Jian Zhao,et al.  Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Jun Zhu,et al.  Analyzing the Training Processes of Deep Generative Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[8]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[9]  Christos Faloutsos,et al.  TourViz: interactive visualization of connection pathways in large graphs , 2012, KDD.

[10]  Heidrun Schumann,et al.  Navigation Recommendations for Exploring Hierarchical Graphs , 2013, ISVC.

[11]  Nan Cao,et al.  StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams , 2018, IEEE Transactions on Visualization and Computer Graphics.

[12]  John T. Stasko,et al.  Orko: Facilitating Multimodal Interaction for Visual Exploration and Analysis of Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[13]  Zhen Li,et al.  Towards Better Analysis of Deep Convolutional Neural Networks , 2016, IEEE Transactions on Visualization and Computer Graphics.

[14]  Kwan-Liu Ma,et al.  What Would a Graph Look Like in this Layout? A Machine Learning Approach to Large Graph Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[15]  Michael Jünger,et al.  Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm , 2004, GD.

[16]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[17]  Jilles Vreeken,et al.  FACETS: Adaptive Local Exploration of Large Graphs , 2017, SDM.

[18]  Christian Tominski,et al.  Event based visualization for user centered visual analysis , 2006 .

[19]  Hanghang Tong,et al.  g-Miner: Interactive Visual Group Mining on Multivariate Graphs , 2015, CHI.

[20]  Chaomei Chen,et al.  Visualizing knowledge domains , 2005, Annu. Rev. Inf. Sci. Technol..

[21]  Tobias Schreck,et al.  Smart Query Definition for Content-Based Search in Large Sets of Graphs , 2010, EuroVAST@EuroVis.

[22]  Aniket Kittur,et al.  Apolo: making sense of large network data by combining rich user interaction and machine learning , 2011, CHI.

[23]  Daniel R. Figueiredo,et al.  struc2vec: Learning Node Representations from Structural Identity , 2017, KDD.

[24]  Jean-Daniel Fekete,et al.  Author Manuscript, Published in "sigchi Conference on Human Factors in Computing Systems Topology-aware Navigation in Large Networks , 2022 .

[25]  Jarke J. van Wijk,et al.  Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration , 2016, IEEE Transactions on Visualization and Computer Graphics.

[26]  Alex Endert,et al.  VIGOR: Interactive Visual Exploration of Graph Query Results , 2018, IEEE Transactions on Visualization and Computer Graphics.

[27]  Yang Liu,et al.  graph2vec: Learning Distributed Representations of Graphs , 2017, ArXiv.

[28]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[29]  Ben Shneiderman,et al.  Motif simplification: improving network visualization readability with fan, connector, and clique glyphs , 2013, CHI.

[30]  Eve E. Hoggan,et al.  How Important Is the "Mental Map"? - An Empirical Investigation of a Dynamic Graph Layout Algorithm , 2006, GD.

[31]  Danai Koutra,et al.  NetSimile: A Scalable Approach to Size-Independent Network Similarity , 2012, ArXiv.

[32]  Jignesh M. Patel,et al.  Efficient aggregation for graph summarization , 2008, SIGMOD Conference.

[33]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[34]  Christos Faloutsos,et al.  GRAPHITE: A Visual Query System for Large Graphs , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[35]  Kwan-Liu Ma,et al.  Large-Scale Graph Visualization and Analytics , 2013, Computer.

[36]  Paul Vickers,et al.  A survey of two-dimensional graph layout techniques for information visualisation , 2013, Inf. Vis..

[37]  Daniel A. Keim,et al.  Visual Analysis of Sets of Heterogeneous Matrices Using Projection‐Based Distance Functions and Semantic Zoom , 2014, Comput. Graph. Forum.

[38]  Yuval Shavitt,et al.  RAGE - A rapid graphlet enumerator for large networks , 2012, Comput. Networks.

[39]  Jeffrey Heer,et al.  Refinery: Visual Exploration of Large, Heterogeneous Networks through Associative Browsing , 2015, Comput. Graph. Forum.

[40]  Jiawei Han,et al.  On graph query optimization in large networks , 2010, Proc. VLDB Endow..

[41]  Kwan-Liu Ma,et al.  Visual Recommendations for Network Navigation , 2011, Comput. Graph. Forum.

[42]  Jun Guo,et al.  SFViz: interest-based friends exploration and recommendation in social networks , 2011, VINCI '11.

[43]  Ambuj K. Singh,et al.  Graphs-at-a-time: query language and access methods for graph databases , 2008, SIGMOD Conference.

[44]  Stanford,et al.  Learning to Discover Social Circles in Ego Networks , 2012 .

[45]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[46]  Heidrun Schumann,et al.  A Modular Degree-of-Interest Specification for the Visual Analysis of Large Dynamic Networks , 2014, IEEE Transactions on Visualization and Computer Graphics.

[47]  Kay Hamacher,et al.  Visual analysis of patterns in multiple amino acid mutation graphs , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[48]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[49]  Dieter Schmalstieg,et al.  Pathfinder: Visual Analysis of Paths in Graphs , 2016, Comput. Graph. Forum.

[50]  Shuigeng Zhou,et al.  VOGUE: Towards A Visual Interaction-aware Graph Query Processing Framework , 2013, CIDR.

[51]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[52]  Gerard J. Chang,et al.  Algorithmic Aspects of Domination in Graphs , 1998 .

[53]  Hong Zhou,et al.  Edge bundling in information visualization , 2013 .

[54]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[55]  Wei Xu,et al.  Visual Analytics of Heterogeneous Data Using Hypergraph Learning , 2018, ACM Trans. Intell. Syst. Technol..

[56]  Tobias Schreck,et al.  A System for Interactive Visual Analysis of Large Graphs Using Motifs in Graph Editing and Aggregation , 2009, VMV.

[57]  Daniel A. Keim,et al.  A Survey on Visual Analytics of Social Media Data , 2016, IEEE Transactions on Multimedia.

[58]  Heidrun Schumann,et al.  Fisheye Tree Views and Lenses for Graph Visualization , 2006, Tenth International Conference on Information Visualisation (IV'06).

[59]  Alex Endert,et al.  VISAGE: Interactive Visual Graph Querying , 2016, AVI.

[60]  Joshua A. Grochow,et al.  Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking , 2007, RECOMB.

[61]  Alexander Lex,et al.  Graffinity: Visualizing Connectivity in Large Graphs , 2017, Comput. Graph. Forum.

[62]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[63]  Jure Leskovec,et al.  Learning Structural Node Embeddings via Diffusion Wavelets , 2017, KDD.

[64]  Christophe Hurter,et al.  Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[65]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[66]  Mengchen Liu,et al.  A survey on information visualization: recent advances and challenges , 2014, The Visual Computer.

[67]  Niklas Elmqvist,et al.  Dynamic Insets for Context‐Aware Graph Navigation , 2011, Comput. Graph. Forum.

[68]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[69]  Michael Garland,et al.  On the Visualization of Social and other Scale-Free Networks , 2008, IEEE Transactions on Visualization and Computer Graphics.

[70]  Catherine Plaisant,et al.  TreePlus: Interactive Exploration of Networks with Enhanced Tree Layouts , 2006, IEEE Transactions on Visualization and Computer Graphics.

[71]  James Abello,et al.  ASK-GraphView: A Large Scale Graph Visualization System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[72]  Tobias Schreck,et al.  Visual analysis of graphs with multiple connected components , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[73]  Philippe Castagliola,et al.  A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations , 2004 .

[74]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[75]  Michael Jünger,et al.  Large-Graph Layout Algorithms at Work: An Experimental Study , 2007, J. Graph Algorithms Appl..

[76]  Andrew Lumsdaine,et al.  A comparison of vertex ordering algorithms for large graph visualization , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[77]  Palash Goyal,et al.  Graph Embedding Techniques, Applications, and Performance: A Survey , 2017, Knowl. Based Syst..

[78]  Minsuk Kahng,et al.  Scalable graph exploration and visualization: Sensemaking challenges and opportunities , 2015, 2015 International Conference on Big Data and Smart Computing (BIGCOMP).