Online Social Deception and Its Countermeasures: A Survey

We are living in an era when online communication over social network services (SNSs) have become an indispensable part of people’s everyday lives. As a consequence, online social deception (OSD) in SNSs has emerged as a serious threat in cyberspace, particularly for users vulnerable to such cyberattacks. Cyber attackers have exploited the sophisticated features of SNSs to carry out harmful OSD activities, such as financial fraud, privacy threat, or sexual/labor exploitation. Therefore, it is critical to understand OSD and develop effective countermeasures against OSD for building trustworthy SNSs. In this paper, we conduct an extensive survey, covering 1) the multidisciplinary concept of social deception; 2) types of OSD attacks and their unique characteristics compared to other social network attacks and cybercrimes; 3) comprehensive defense mechanisms embracing prevention, detection, and response (or mitigation) against OSD attacks along with their pros and cons; 4) datasets/metrics used for validation and verification; and 5) legal and ethical concerns related to OSD research. Based on this survey, we provide insights into the effectiveness of countermeasures and the lessons learned from the existing literature. We conclude our survey with in-depth discussions on the limitations of the state-of-the-art and suggest future research directions in OSD research.

[1]  George R. S. Weir,et al.  that influence judgment of social engineering attacks in social networks , 2018 .

[2]  Majid Mohammadi,et al.  Computational Rumor Detection Without Non-Rumor: A One-Class Classification Approach , 2019, IEEE Transactions on Computational Social Systems.

[3]  V. S. Subrahmanian,et al.  An Army of Me: Sockpuppets in Online Discussion Communities , 2017, WWW.

[4]  J. Pennebaker,et al.  Psychological aspects of natural language. use: our words, our selves. , 2003, Annual review of psychology.

[5]  Dongsong Zhang,et al.  Following linguistic footprints: automatic deception detection in online communication , 2008, CACM.

[6]  Aldert Vrij,et al.  The psychology of deception , 2001 .

[7]  Sylvio Barbon Junior,et al.  Authorship verification applied to detection of compromised accounts on online social networks , 2017, Multimedia Tools and Applications.

[8]  Yao Lu,et al.  Detecting “Smart” Spammers on Social Network: A Topic Model Approach , 2016, NAACL.

[9]  Quanyan Zhu,et al.  Deployment and exploitation of deceptive honeybots in social networks , 2012, 52nd IEEE Conference on Decision and Control.

[10]  Myriam Hernández-Álvarez,et al.  Detection of Possible Human Trafficking in Twitter , 2019, 2019 International Conference on Information Systems and Software Technologies (ICI2ST).

[11]  M. Berson,et al.  Emerging Risks of Violence in the Digital Age , 2002 .

[12]  Tarek M Negm,et al.  News Credibility Measure Utilizing Ontologies & Semantic Weighing Schemes (NCMOSWS) , 2018, 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[13]  Peng Yang,et al.  Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning , 2019, IEEE Access.

[14]  Ke Ding,et al.  Towards building a word similarity dictionary for personality bias classification of phishing email contents , 2015, Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015).

[15]  James J. Lindsay,et al.  Cues to deception. , 2003, Psychological bulletin.

[16]  P. Granhag,et al.  A new theoretical perspective on deception detection: On the psychology of instrumental mind-reading , 2008 .

[17]  Wei Huang,et al.  Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal , 2011 .

[18]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[19]  Sherali Zeadally,et al.  Online deception in social media , 2014, Commun. ACM.

[20]  Hamed Haddadi,et al.  To Add or Not to Add: Privacy and Social Honeypots , 2010, 2010 IEEE International Conference on Communications Workshops.

[21]  Guofei Gu,et al.  Analyzing spammers' social networks for fun and profit: a case study of cyber criminal ecosystem on twitter , 2012, WWW.

[22]  Michelle L. Kelley,et al.  Bystanders Against Cyberbullying: a Video Program for College Students , 2019, International Journal of Bullying Prevention.

[23]  Sotiris Ioannidis,et al.  Detecting social network profile cloning , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[24]  Jin-Hee Cho,et al.  Effect of personality traits on trust and risk to phishing vulnerability: Modeling and analysis , 2016, 2016 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA).

[25]  H. Allen Smith The compleat practical joker , 1980 .

[26]  Jiajia Wang,et al.  SIR rumor spreading model in the new media age , 2013 .

[27]  James F. Roiger,et al.  Testing Interpersonal Deception Theory: The Language of Interpersonal Deception , 1996 .

[28]  L. Fleischer Telling Lies Clues To Deceit In The Marketplace Politics And Marriage , 2016 .

[29]  Christo Wilson,et al.  Linguistic Signals under Misinformation and Fact-Checking , 2018, Proc. ACM Hum. Comput. Interact..

[30]  Brij B. Gupta,et al.  Hybrid approach for detection of malicious profiles in twitter , 2019, Comput. Electr. Eng..

[31]  Raymond Y. K. Lau,et al.  Discriminative Topic Mining for Social Spam Detection , 2014, PACIS.

[32]  Keqin Li,et al.  A keyword-based combination approach for detecting phishing webpages , 2019, Comput. Secur..

[33]  Abhijit M. Patwardhan,et al.  The use of strategic deception in relationships , 2009 .

[34]  Michail Tsikerdekis,et al.  Identity Deception Prevention Using Common Contribution Network Data , 2017, IEEE Transactions on Information Forensics and Security.

[35]  R. Byrne,et al.  Machiavellian intelligence II : extensions and evaluations , 1997 .

[36]  K. Scherer,et al.  Stress specificities: differential effects of coping style, gender, and type of stressor on autonomic arousal, facial expression, and subjective feeling. , 1991, Journal of personality and social psychology.

[37]  Christos Faloutsos,et al.  REV2: Fraudulent User Prediction in Rating Platforms , 2018, WSDM.

[38]  Irwin Greenberg,et al.  The Role of Deception in Decision Theory , 1982 .

[39]  Balasubramanian Raman,et al.  Combining Neural, Statistical and External Features for Fake News Stance Identification , 2018, WWW.

[40]  Günther Ortmann,et al.  On drifting rules and standards , 2010 .

[41]  Kenny Q. Zhu,et al.  False rumors detection on Sina Weibo by propagation structures , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[42]  Gang Wang,et al.  Characterizing and detecting malicious crowdsourcing , 2013, SIGCOMM.

[43]  Henry Lieberman,et al.  Common Sense Reasoning for Detection, Prevention, and Mitigation of Cyberbullying , 2012, TIIS.

[44]  Huan Liu,et al.  Detecting Crowdturfing in Social Media , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[45]  Neil C. Rowe,et al.  Introduction to Cyberdeception , 2016, Springer International Publishing.

[46]  Jingjing Cheng,et al.  SIHR rumor spreading model in social networks , 2012 .

[47]  S. Heine,et al.  Evolutionary explanations need to account for cultural variation , 2011 .

[48]  Philip N. Howard,et al.  Political Bots and the Manipulation of Public Opinion in Venezuela , 2015, ArXiv.

[49]  Jacob Ratkiewicz,et al.  Truthy: mapping the spread of astroturf in microblog streams , 2010, WWW.

[50]  Vern Paxson,et al.  @spam: the underground on 140 characters or less , 2010, CCS '10.

[51]  Jure Leskovec,et al.  Disinformation on the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes , 2016, WWW.

[52]  Michele L. Ybarra,et al.  Online "predators" and their victims: myths, realities, and implications for prevention and treatment. , 2008, The American psychologist.

[53]  Ciro Cattuto,et al.  Social spam detection , 2009, AIRWeb '09.

[54]  John G Adair,et al.  Ethical regulations and their impact on research practice. , 1985, The American psychologist.

[55]  Oscar Serrano Serrano,et al.  Changing the game: The art of deceiving sophisticated attackers , 2014, 2014 6th International Conference On Cyber Conflict (CyCon 2014).

[56]  Martin White,et al.  Fake News: A Technological Approach to Proving the Origins of Content, Using Blockchains , 2017, Big Data.

[57]  Joey F. George,et al.  Cross-cultural deception in social networking sites and face-to-face communication , 2008, Comput. Hum. Behav..

[58]  Kyumin Lee,et al.  Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter , 2011, ICWSM.

[59]  Christopher B. Mayhorn,et al.  Phishing in international waters: exploring cross-national differences in phishing conceptualizations between Chinese, Indian and American samples , 2014, HotSoS '14.

[60]  Cormac Herley,et al.  Evaluating a trial deployment of password re-use for phishing prevention , 2007, eCrime '07.

[61]  Sirkka L. Jarvenpaa,et al.  Perils of Internet fraud: an empirical investigation of deception and trust with experienced Internet consumers , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[62]  Qinghua Zheng,et al.  Semi-supervised clue fusion for spammer detection in Sina Weibo , 2018, Inf. Fusion.

[63]  Michael I. Norton,et al.  The what and why of self-deception , 2015 .

[64]  Pang-Ning Tan,et al.  CADET: A Multi-View Learning Framework for Compromised Account Detection on Twitter , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[65]  Ponnurangam Kumaraguru,et al.  Who falls for phish?: a demographic analysis of phishing susceptibility and effectiveness of interventions , 2010, CHI.

[66]  Gang Wang,et al.  Man vs. Machine: Practical Adversarial Detection of Malicious Crowdsourcing Workers , 2014, USENIX Security Symposium.

[67]  Oded Nov,et al.  Spear-Phishing in the Wild: A Real-World Study of Personality, Phishing Self-Efficacy and Vulnerability to Spear-Phishing Attacks , 2015 .

[68]  Tian Lin,et al.  Dissecting Spear Phishing Emails for Older vs Young Adults: On the Interplay of Weapons of Influence and Life Domains in Predicting Susceptibility to Phishing , 2017, CHI.

[69]  Rossouw von Solms,et al.  From information security to cyber security , 2013, Comput. Secur..

[70]  Michael Kaminsky,et al.  SybilLimit: A Near-Optimal Social Network Defense against Sybil Attacks , 2008, S&P 2008.

[71]  Gaurav Gupta,et al.  Socio-technological phishing prevention , 2011, Inf. Secur. Tech. Rep..

[72]  Marianna Diomidous,et al.  Social and Psychological Effects of the Internet Use , 2016, Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia & Herzegovina : casopis Drustva za medicinsku informatiku BiH.

[73]  Jinquan Zeng,et al.  Rumor Identification in Microblogging Systems Based on Users’ Behavior , 2015, IEEE Transactions on Computational Social Systems.

[74]  Calton Pu,et al.  Social Honeypots: Making Friends With A Spammer Near You , 2008, CEAS.

[75]  Chao Yang,et al.  A taste of tweets: reverse engineering Twitter spammers , 2014, ACSAC.

[76]  Jong Kim,et al.  CrowdTarget: Target-based Detection of Crowdturfing in Online Social Networks , 2015, CCS.

[77]  Wei Gao,et al.  Rumor Detection on Twitter with Tree-structured Recursive Neural Networks , 2018, ACL.

[78]  Filippo Menczer,et al.  Hoaxy: A Platform for Tracking Online Misinformation , 2016, WWW.

[79]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Markus Strohmaier,et al.  When Social Bots Attack: Modeling Susceptibility of Users in Online Social Networks , 2012, #MSM.

[81]  Bernard Gert,et al.  Morality: Its Nature and Justification , 1988 .

[82]  Aziz Mohaisen,et al.  Fighting Fake News Propagation with Blockchains , 2019, 2019 IEEE Conference on Communications and Network Security (CNS).

[83]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[84]  Jeroen Bruggeman Deceit and Self‐Deception , 2015 .

[85]  Kyumin Lee,et al.  Crowdturfers, Campaigns, and Social Media: Tracking and Revealing Crowdsourced Manipulation of Social Media , 2013, ICWSM.

[86]  Feng Xiao,et al.  SybilLimit: A Near-Optimal Social Network Defense against Sybil Attacks , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[87]  Eric Gilbert,et al.  A Parsimonious Language Model of Social Media Credibility Across Disparate Events , 2017, CSCW.

[88]  Anthony R. Beech,et al.  A review of young people's vulnerabilities to online grooming , 2013 .

[89]  Alfonso Troisi,et al.  Displacement Activities as a Behavioral Measure of Stress in Nonhuman Primates and Human Subjects , 2002, Stress.

[90]  Asuman E. Ozdaglar,et al.  Spread of (Mis)Information in Social Networks , 2009, Games Econ. Behav..

[91]  Krishna P. Gummadi,et al.  Understanding and combating link farming in the twitter social network , 2012, WWW.

[92]  Karl E. Lonngren,et al.  A New Variant of the SEIZ Model to Describe the Spreading of a Rumor , 2017 .

[93]  G. Hofstede Dimensionalizing cultures: The Hofstede model in context , 2011 .

[94]  I. Wilkinson,et al.  Behavioural and functional anatomical correlates of deception in humans , 2001, Neuroreport.

[95]  G. Caldarelli,et al.  The spreading of misinformation online , 2016, Proceedings of the National Academy of Sciences.

[96]  Flávio Codeço Coelho,et al.  Modeling news spread as an SIR process over temporal networks , 2016, ArXiv.

[97]  Soroush Vosoughi,et al.  A Human-Machine Collaborative System for Identifying Rumors on Twitter , 2015, 2015 IEEE International Conference on Data Mining Workshop (ICDMW).

[98]  M. R. Dando,et al.  Complex Strategic Analysis: A Hypergame Study of the Fall of France , 1979 .

[99]  Wei Gao,et al.  Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning , 2017, ACL.

[100]  Wendy Goucher Being a cybercrime victim , 2010 .

[101]  M. Knapp,et al.  An Exploration of Deception as a Communication Construct , 1974 .

[102]  Jong Hyuk Park,et al.  Social network security: Issues, challenges, threats, and solutions , 2017, Inf. Sci..

[103]  Patricio Zambrano,et al.  Technical Mapping of the Grooming Anatomy Using Machine Learning Paradigms: An Information Security Approach , 2019, IEEE Access.

[104]  Salvatore J. Stolfo,et al.  Ethics in security vulnerability research , 2010, IEEE Security & Privacy.

[105]  Ding-Zhu Du,et al.  Minimizing Misinformation Profit in Social Networks , 2019, IEEE Transactions on Computational Social Systems.

[106]  Jay F. Nunamaker,et al.  Detecting Deceptive Chat-Based Communication Using Typing Behavior and Message Cues , 2013, TMIS.

[107]  Carlo Kopp,et al.  Information-theoretic models of deception: Modelling cooperation and diffusion in populations exposed to "fake news" , 2018, PloS one.

[108]  Andrew Ortony,et al.  The Referential Structure of the Affective Lexicon , 1987, Cogn. Sci..

[109]  J. A. Clark,et al.  Modelling user-phishing interaction , 2008, 2008 Conference on Human System Interactions.

[110]  Younès El Bouzekri El Idrissi,et al.  A security approach for social networks based on honeypots , 2016, 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt).

[111]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[112]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[113]  Ryan T. Wright,et al.  Where Did They Go Right? Understanding the Deception in Phishing Communications , 2010 .

[114]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[115]  Gert-Jan de Vreede,et al.  Disruption and Deception in Crowdsourcing: Towards a Crowdsourcing Risk Framework , 2018, HICSS.

[116]  Tian Lin,et al.  Susceptibility to Spear-Phishing Emails: Effects of Internet User Demographics and Email Content , 2019, ACM Trans. Comput. Hum. Interact..

[117]  Adriana Iamnitchi,et al.  A Survey on Privacy and Security in Online Social Networks , 2015, Online Soc. Networks Media.

[118]  Emiliano De Cristofaro,et al.  Paying for Likes?: Understanding Facebook Like Fraud Using Honeypots , 2014, Internet Measurement Conference.

[119]  Eric Gilbert,et al.  Credibility and the Dynamics of Collective Attention , 2016, Proc. ACM Hum. Comput. Interact..

[120]  Mark Latonero Human Trafficking Online: The Role of Social Networking Sites and Online Classifieds , 2011 .

[121]  Ali Darwish,et al.  Towards understanding phishing victims' profile , 2012, 2012 International Conference on Computer Systems and Industrial Informatics.

[122]  R. E. Christal,et al.  Recurrent personality factors based on trait ratings. , 1992, Journal of personality.

[123]  Suhang Wang,et al.  Fake News Detection on Social Media: A Data Mining Perspective , 2017, SKDD.

[124]  Rami Puzis,et al.  Creation and Management of Social Network Honeypots for Detecting Targeted Cyber Attacks , 2017, IEEE Transactions on Computational Social Systems.

[125]  Jeffrey T. Hancock,et al.  On Lying and Being Lied To: A Linguistic Analysis of Deception in Computer-Mediated Communication , 2007 .

[126]  Arun Vishwanath,et al.  Habitual Facebook Use and its Impact on Getting Deceived on Social Media , 2015, J. Comput. Mediat. Commun..

[127]  B. Nyhan,et al.  When Corrections Fail: The Persistence of Political Misperceptions , 2010 .

[128]  Aldert Vrij,et al.  Why professionals fail to catch liars and how they can improve , 2004 .

[129]  Christos Faloutsos,et al.  Opinion Fraud Detection in Online Reviews by Network Effects , 2013, ICWSM.

[130]  Huan Liu,et al.  Tracing Fake-News Footprints: Characterizing Social Media Messages by How They Propagate , 2018, WSDM.

[131]  Huan Liu,et al.  Social Spammer Detection in Microblogging , 2013, IJCAI.

[132]  Jin-Hee Cho,et al.  Software Defined Network Based Virtual Machine Placement in Cloud Systems , 2017, MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM).

[133]  Ananthram Swami,et al.  Com2: Fast Automatic Discovery of Temporal ('Comet') Communities , 2014, PAKDD.

[134]  Reza Zafarani,et al.  Fake News: A Survey of Research, Detection Methods, and Opportunities , 2018, ArXiv.

[135]  Henry Schwalbenberg,et al.  Human Trafficking. , 2020, Annals of emergency medicine.

[136]  Jun Hu,et al.  Security Issues in Online Social Networks , 2011, IEEE Internet Computing.

[137]  Abdelfettah Belghith,et al.  CBR-PDS: a case-based reasoning phishing detection system , 2019, J. Ambient Intell. Humaniz. Comput..

[138]  Naren Ramakrishnan,et al.  Epidemiological modeling of news and rumors on Twitter , 2013, SNAKDD '13.

[139]  Huan Liu,et al.  Mining Misinformation in Social Media , 2016 .

[140]  Yimin Chen,et al.  Deception detection for news: Three types of fakes , 2015, ASIST.

[141]  Huan Liu,et al.  Social Spammer Detection with Sentiment Information , 2014, 2014 IEEE International Conference on Data Mining.

[142]  Jens Seiffert-Brockmann,et al.  Self-deception in public relations. A psychological and sociological approach to the challenge of conflicting expectations , 2017 .

[143]  Sebastian Tschiatschek,et al.  Fake News Detection in Social Networks via Crowd Signals , 2017, WWW.

[144]  Gianluca Stringhini,et al.  Detecting spammers on social networks , 2010, ACSAC '10.

[145]  Veronika Kalmus,et al.  MOTIVES FOR INTERNET USE AND THEIR RELATIONSHIPS WITH PERSONALITY TRAITS AND SOCIO-DEMOGRAPHIC FACTORS , 2011 .

[146]  J. Krebs Deception: Perspectives on Human and Nonhuman Deceit, Robert W. Mitchell, Nicholas S. Thompson (Eds.). State University of New York Press, New York (1986), xxix , 1986 .

[147]  Masayuki Numao,et al.  SIR-Extended Information Diffusion Model of False Rumor and its Prevention Strategy for Twitter , 2014, J. Adv. Comput. Intell. Intell. Informatics.

[148]  Surendra Sedhai,et al.  Semi-Supervised Spam Detection in Twitter Stream , 2017, IEEE Transactions on Computational Social Systems.

[149]  Qun A. Li,et al.  A Survey of Security and Privacy in Online Social Networks , 2012 .

[150]  Rami Puzis,et al.  Hunting organization-targeted socialbots , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[151]  F. Cohen The Use of Deception Techniques : Honeypots and Decoys , 2004 .

[152]  Quanyan Zhu,et al.  A Game-theoretic Taxonomy and Survey of Defensive Deception for Cybersecurity and Privacy , 2017, ACM Comput. Surv..

[153]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[154]  Robert Taylor,et al.  Criminal profiling and insider cyber crime , 2005, Digit. Investig..

[155]  Neil Shah,et al.  False Information on Web and Social Media: A Survey , 2018, ArXiv.

[156]  C. F. Bond,et al.  Lie detection across cultures , 1990 .

[157]  Yuval Elovici,et al.  Online Social Networks: Threats and Solutions , 2013, IEEE Communications Surveys & Tutorials.

[158]  Ben Y. Zhao,et al.  Automated Crowdturfing Attacks and Defenses in Online Review Systems , 2017, CCS.

[159]  B. Meltzer Lying: deception in human affairs , 2003 .

[160]  Matthew Louis Mauriello,et al.  Fake News vs Satire: A Dataset and Analysis , 2018, WebSci.

[161]  Tobias Weller Compromised Account Detection Based on Clickstream Data , 2018, WWW.

[162]  Jose B. Cruz,et al.  Information, decision-making and deception in games , 2009, Decis. Support Syst..

[163]  Wolfgang Nejdl,et al.  MailRank: using ranking for spam detection , 2005, CIKM '05.

[164]  J. Burgoon,et al.  Interpersonal Deception Theory , 1996 .

[165]  Roberto Di Pietro,et al.  Social Fingerprinting: Detection of Spambot Groups Through DNA-Inspired Behavioral Modeling , 2017, IEEE Transactions on Dependable and Secure Computing.

[166]  Nyein Nyein Myo,et al.  Fake Accounts Detection on Twitter Using Blacklist , 2018, 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS).

[167]  A. Culyer Spearman’s rank correlation coefficient , 2014, BMJ : British Medical Journal.

[168]  Jun Zhang,et al.  A Performance Evaluation of Machine Learning-Based Streaming Spam Tweets Detection , 2015, IEEE Transactions on Computational Social Systems.

[169]  Jason R. C. Nurse,et al.  The anatomy of online deception: what makes automated text convincing? , 2016, SAC.

[170]  M. Strube,et al.  The Multiply Motivated Self , 1995 .

[171]  Tanushree Mitra,et al.  Evaluating the Inverted Pyramid Structure through Automatic 5W1H Extraction and Summarization , 2020 .

[172]  Gang Wang,et al.  Serf and turf: crowdturfing for fun and profit , 2011, WWW.

[173]  Thanh Tran,et al.  Uncovering Fake Likers in Online Social Networks , 2016, CIKM.

[174]  Neha Gupta,et al.  Falling for Fake News: Investigating the Consumption of News via Social Media , 2018, CHI.

[175]  V. S. Subrahmanian,et al.  Accurately detecting trolls in Slashdot Zoo via decluttering , 2014, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014).

[176]  Christos Faloutsos,et al.  Inferring Strange Behavior from Connectivity Pattern in Social Networks , 2014, PAKDD.

[177]  Naresh K. Malhotra,et al.  Internet Users' Information Privacy Concerns (IUIPC): The Construct, the Scale, and a Causal Model , 2004, Inf. Syst. Res..

[178]  Amir Herzberg,et al.  Ethical Considerations when Employing Fake Identities in Online Social Networks for Research , 2014, Sci. Eng. Ethics.

[179]  Cong Yan,et al.  Enhancing and identifying cloning attacks in online social networks , 2013, ICUIMC '13.

[180]  Filippo Menczer,et al.  The rise of social bots , 2014, Commun. ACM.

[181]  Kyle B. Heuett,et al.  Twitter in the classroom: Modeling online communication attitudes and student motivations to connect , 2018, Comput. Hum. Behav..

[182]  Donald C. Daniel,et al.  Strategic military deception , 1982 .

[183]  T. Carson,et al.  Lying and Deception: Theory and Practice , 2010 .

[184]  Yongdong Zhang,et al.  News Credibility Evaluation on Microblog with a Hierarchical Propagation Model , 2014, 2014 IEEE International Conference on Data Mining.

[185]  Eric Gilbert,et al.  CREDBANK: A Large-Scale Social Media Corpus With Associated Credibility Annotations , 2015, ICWSM.

[186]  Yongdong Zhang,et al.  News Verification by Exploiting Conflicting Social Viewpoints in Microblogs , 2016, AAAI.

[187]  Spyridon Samonas,et al.  The CIA Strikes Back: Redefining Confidentiality, Integrity and Availability in Security , 2014 .

[188]  R. C. Gur,et al.  Brain Activity during Simulated Deception: An Event-Related Functional Magnetic Resonance Study , 2002, NeuroImage.

[189]  Stephen Porter,et al.  Cry me a river: identifying the behavioral consequences of extremely high-stakes interpersonal deception. , 2012, Law and human behavior.

[190]  M. Zuckerman Verbal and nonverbal communication of deception , 1981 .

[191]  Rami Puzis,et al.  Anti-Reconnaissance Tools: Detecting Targeted Socialbots , 2014, IEEE Internet Computing.

[192]  Elaine E. Englehardt,et al.  Lies, deception, and public relations , 1994 .

[193]  Ronald E. Riggio,et al.  Individual Differences and Cues to Deception , 1983 .

[194]  Raymond Y. K. Lau,et al.  A Probabilistic Generative Model for Mining Cybercriminal Networks from Online Social Media , 2014, IEEE Computational Intelligence Magazine.

[195]  S. Lea,et al.  How Neurotic are Scam Victims, Really? The Big Five and Internet Scams , 2012 .

[196]  Christos Faloutsos,et al.  oddball: Spotting Anomalies in Weighted Graphs , 2010, PAKDD.

[197]  Julia Hirschberg,et al.  Personality factors in human deception detection: comparing human to machine performance , 2006, INTERSPEECH.

[198]  D. Dittrich The ethics of social honeypots , 2015 .

[199]  Andreas Vlachos,et al.  Emergent: a novel data-set for stance classification , 2016, NAACL.

[200]  Niki Pissinou,et al.  Preventing Colluding Identity Clone Attacks in Online Social Networks , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW).

[201]  Barton Whaley Toward a general theory of deception , 1982 .

[202]  Nasir Memon,et al.  A pilot study of cyber security and privacy related behavior and personality traits , 2013, WWW.

[203]  Tina Mainieri,et al.  The rise and fall of deception in social psychology and personality research, 1921 to 1994. , 1997, Ethics & behavior.

[204]  Ioannis Korkontzelos,et al.  Detection of spam-posting accounts on Twitter , 2018, Neurocomputing.

[205]  Wim Bernasco,et al.  Determinants of reporting cybercrime: A comparison between identity theft, consumer fraud, and hacking , 2019 .

[206]  Christos Faloutsos,et al.  CatchSync: catching synchronized behavior in large directed graphs , 2014, KDD.

[207]  Gianluca Stringhini,et al.  COMPA: Detecting Compromised Accounts on Social Networks , 2013, NDSS.

[208]  Benjamin D. Horne,et al.  Uncertainty-based False Information Propagation in Social Networks , 2019, ACM Trans. Soc. Comput..

[209]  J. Pennebaker,et al.  Lying Words: Predicting Deception from Linguistic Styles , 2003, Personality & social psychology bulletin.

[210]  Adam N. Joinson,et al.  Individual differences in susceptibility to online influence: A theoretical review , 2017, Comput. Hum. Behav..

[211]  R. Kraut,et al.  Behavioral roots of person perception: The deception judgments of customs inspectors and laymen. , 1980 .

[212]  Calton Pu,et al.  Social spam, campaigns, misinformation and crowdturfing , 2014, WWW '14 Companion.

[213]  RYAN HEARTFIELD,et al.  A Taxonomy of Attacks and a Survey of Defence Mechanisms for Semantic Social Engineering Attacks , 2015, ACM Comput. Surv..

[214]  Kyumin Lee,et al.  Uncovering social spammers: social honeypots + machine learning , 2010, SIGIR.

[215]  Samy Bengio,et al.  Adversarial Machine Learning at Scale , 2016, ICLR.

[216]  James Caverlee,et al.  Detecting Spam URLs in Social Media via Behavioral Analysis , 2015, ECIR.