Cy-CNN: cylinder convolution based rotation-invariant neural network for point cloud registration

[1]  Ming Yang,et al.  LiDAR SLAM Based Multivehicle Cooperative Localization Using Iterated Split CIF , 2022, IEEE Transactions on Intelligent Transportation Systems.

[2]  W. Xie,et al.  Geometric deep learning: progress, applications and challenges , 2022, Science China Information Sciences.

[3]  Lei Han,et al.  Real-Time Globally Consistent Dense 3D Reconstruction With Online Texturing , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Chi-Wing Fu,et al.  A Rotation-Invariant Framework for Deep Point Cloud Analysis , 2020, IEEE Transactions on Visualization and Computer Graphics.

[5]  Hui Huang,et al.  Learning practically feasible policies for online 3D bin packing , 2021, Science China Information Sciences.

[6]  Hui Huang,et al.  Hausdorff point convolution with geometric priors , 2020, Science China Information Sciences.

[7]  Bo Yang,et al.  SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Heng Yang,et al.  TEASER: Fast and Certifiable Point Cloud Registration , 2020, IEEE Transactions on Robotics.

[9]  Enrico Magli,et al.  Learning Localized Representations of Point Clouds With Graph-Convolutional Generative Adversarial Networks , 2021, IEEE Transactions on Multimedia.

[10]  Qinping Zhao,et al.  Semantic part segmentation of single-view point cloud , 2020, Science China Information Sciences.

[11]  Junjun Jiang,et al.  Image Matching from Handcrafted to Deep Features: A Survey , 2020, International Journal of Computer Vision.

[12]  Hyo Jong Lee,et al.  Deep Global Features for Point Cloud Alignment , 2020, Sensors.

[13]  Ming Yang,et al.  Robust Point Set Registration Using Signature Quadratic Form Distance , 2020, IEEE Transactions on Cybernetics.

[14]  Zi Jian Yew,et al.  RPM-Net: Robust Point Matching Using Learned Features , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  J. D. Wegner,et al.  Learning Multiview 3D Point Cloud Registration , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Yanning Zhang,et al.  Evaluating Local Geometric Feature Representations for 3D Rigid Data Matching , 2019, IEEE Transactions on Image Processing.

[17]  Cewu Lu,et al.  Pointwise Rotation-Invariant Network with Adaptive Sampling and 3D Spherical Voxel Convolution , 2018, AAAI.

[18]  Quan Z. Sheng,et al.  Nonrigid Point Set Registration With Robust Transformation Learning Under Manifold Regularization , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Yinhe Han,et al.  Accelerating DNN-based 3D point cloud processing for mobile computing , 2019, Science China Information Sciences.

[20]  Maks Ovsjanikov,et al.  Effective Rotation-Invariant Point CNN with Spherical Harmonics Kernels , 2019, 2019 International Conference on 3D Vision (3DV).

[21]  Chao Chen,et al.  ClusterNet: Deep Hierarchical Cluster Network With Rigorously Rotation-Invariant Representation for Point Cloud Analysis , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Chunxiang Wang,et al.  Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[23]  Shiyu Song,et al.  DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[24]  Yue Wang,et al.  Deep Closest Point: Learning Representations for Point Cloud Registration , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Yasuhiro Aoki,et al.  PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[27]  Slobodan Ilic,et al.  PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors , 2018, ECCV.

[28]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Binh-Son Hua,et al.  Pointwise Convolutional Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[30]  Kurt Keutzer,et al.  SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Jiayi Ma,et al.  Locality Preserving Matching , 2017, International Journal of Computer Vision.

[32]  Silvio Savarese,et al.  SEGCloud: Semantic Segmentation of 3D Point Clouds , 2017, 2017 International Conference on 3D Vision (3DV).

[33]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[34]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[37]  Roland Siegwart,et al.  Point Clouds Registration with Probabilistic Data Association , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[38]  Jiaolong Yang,et al.  Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Sven Behnke,et al.  Registration with the Point Cloud Library: A Modular Framework for Aligning in 3-D , 2015, IEEE Robotics & Automation Magazine.

[40]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[42]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Roland Siegwart,et al.  Comparing ICP variants on real-world data sets , 2013, Auton. Robots.

[44]  Baba C. Vemuri,et al.  Robust Point Set Registration Using Gaussian Mixture Models , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Nassir Navab,et al.  Model globally, match locally: Efficient and robust 3D object recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  U. Ascher,et al.  Consolidation of unorganized point clouds for surface reconstruction , 2009, ACM Trans. Graph..

[48]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[49]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Andrea Censi,et al.  An ICP variant using a point-to-line metric , 2008, 2008 IEEE International Conference on Robotics and Automation.

[51]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[52]  Tom Duckett,et al.  Scan registration for autonomous mining vehicles using 3D‐NDT , 2007, J. Field Robotics.

[53]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.