Dynamic local search for SAT : design, insights and analysis
暂无分享,去创建一个
[1] Harry Zhang,et al. Combining Adaptive Noise and Look-Ahead in Local Search for SAT , 2007, SAT.
[2] Kevin Leyton-Brown,et al. SATenstein: Automatically Building Local Search SAT Solvers from Components , 2009, IJCAI.
[3] Alan J. Hu,et al. Calysto: scalable and precise extended static checking , 2008, ICSE.
[4] Holger H. Hoos. SAT-Encodings, Search Space Structure, and Local Search Performance , 1999, IJCAI.
[5] Calin Anton,et al. Generating Satisfiable SAT Instances Using Random Subgraph Isomorphism , 2009, Canadian Conference on AI.
[6] Pascal Van Hentenryck,et al. Control Abstractions for Local Search , 2003, Constraints.
[7] Holger H. Hoos,et al. Local Search Methods , 2006, Handbook of Constraint Programming.
[8] Elaine B. Barker,et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .
[9] Alan J. Hu,et al. Boosting Verification by Automatic Tuning of Decision Procedures , 2007, Formal Methods in Computer Aided Design (FMCAD'07).
[10] Carlos Ansótegui,et al. A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.
[11] Harry Zhang,et al. A Switching Criterion for Intensification and Diversification in Local Search for SAT , 2008, J. Satisf. Boolean Model. Comput..
[12] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[13] John Franco,et al. Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..
[14] Bart Selman,et al. Evidence for Invariants in Local Search , 1997, AAAI/IAAI.
[15] Thomas Stützle,et al. SATLIB: An Online Resource for Research on SAT , 2000 .
[16] Kevin Leyton-Brown,et al. : The Design and Analysis of an Algorithm Portfolio for SAT , 2007, CP.
[17] John Thornton,et al. Clause Weighting Local Search for SAT , 2005, Journal of Automated Reasoning.
[18] Henry Kautz,et al. Domain-independant extensions to GSAT : Solving large structured variables , 1993, International Joint Conference on Artificial Intelligence.
[19] Pierre Hansen,et al. Algorithms for the maximum satisfiability problem , 1987, Computing.
[20] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[21] Paul Morris,et al. The Breakout Method for Escaping from Local Minima , 1993, AAAI.
[22] Kevin Leyton-Brown,et al. SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..
[23] Hector J. Levesque,et al. A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.
[24] Robert E. Tarjan,et al. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..
[25] Abdul Sattar,et al. Neighbourhood Clause Weight Redistribution in Local Search for SAT , 2005, CP.
[26] Teresa Alsinet,et al. Minimal and Redundant SAT Encodings for the All-Interval-Series Problem , 2002, CCIA.
[28] Thomas Stützle,et al. Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.
[29] Michael T. Wolfinger,et al. Barrier Trees of Degenerate Landscapes , 2002 .
[30] Yoav Shoham,et al. Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.
[31] P. Slater,et al. Permutations of the positive integers with restrictions on the sequence of differences. , 1977 .
[32] H. Hoos. Computer-Aided Design of High-Performance Algorithms , 2008 .
[33] Holger H. Hoos,et al. Warped Landscapes and Random Acts of SAT Solving , 2004, AI&M.
[34] Holger H. Hoos,et al. UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.
[35] Kevin Leyton-Brown,et al. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.
[36] Thomas Stützle,et al. Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.
[37] Bart Selman,et al. Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.
[38] Bart Selman,et al. Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.
[39] Armin Biere,et al. Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.
[40] Ian P. Gent,et al. Unsatisfied Variables in Local Search , 1995 .
[41] Holger H. Hoos,et al. Stochastic local search - methods, models, applications , 1998, DISKI.
[42] Dale Schuurmans,et al. The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming , 2001, IJCAI.
[43] Armin Biere,et al. PicoSAT Essentials , 2008, J. Satisf. Boolean Model. Comput..
[44] Chu Min Li,et al. Diversification and Determinism in Local Search for Satisfiability , 2005, SAT.
[45] M. D. MacLaren. The Art of Computer Programming. Volume 2: Seminumerical Algorithms (Donald E. Knuth) , 1970 .
[46] Éric D. Taillard,et al. Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..
[47] Luca Maria Gambardella,et al. Adaptive memory programming: A unified view of metaheuristics , 1998, Eur. J. Oper. Res..
[48] Jeremy Frank,et al. Weighting for Godot: Learning Heuristics for GSAT , 1996, AAAI/IAAI, Vol. 1.
[49] Hector J. Levesque,et al. Hard and Easy Distributions of SAT Problems , 1992, AAAI.
[50] Zhe Wu,et al. An Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems , 2000, AAAI/IAAI.
[51] Daniel Kroening,et al. A Tool for Checking ANSI-C Programs , 2004, TACAS.
[52] Byungki Cha,et al. Adding New Clauses for Faster Local Search , 1996, AAAI/IAAI, Vol. 1.
[53] John N. Hooker,et al. Needed: An Empirical Science of Algorithms , 1994, Oper. Res..
[54] Alex S. Fukunaga. Efficient Implementations of SAT Local Search , 2004, SAT.
[55] John N. Hooker,et al. Testing heuristics: We have it all wrong , 1995, J. Heuristics.
[56] John Thornton,et al. Using Cost Distributions to Guide Weight Decay in Local Search for SAT , 2008, PRICAI.
[57] Frank Hutter,et al. Automated configuration of algorithms for solving hard computational problems , 2009 .
[58] Oliver Kullmann. The SAT 2005 Solver Competition on Random Instances , 2006, J. Satisf. Boolean Model. Comput..
[59] Kazuo Iwama,et al. Improved upper bounds for 3-SAT , 2004, SODA '04.
[60] Uwe Schöning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.
[61] Kevin Leyton-Brown,et al. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.
[62] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[63] Mark E. Stickel,et al. Implementing the Davis–Putnam Method , 2000, Journal of Automated Reasoning.
[64] Benjamin W. Wah,et al. A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems , 1996, J. Glob. Optim..
[65] Toby Walsh,et al. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .
[66] Holger H. Hoos,et al. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT , 1999, AAAI/IAAI.
[67] Alex S. Fukunaga,et al. Evolving Local Search Heuristics for SAT Using Genetic Programming , 2004, GECCO.
[68] Toby Walsh,et al. Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.
[69] Cecilia R. Aragon,et al. Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..
[70] Bart Selman,et al. Noise Strategies for Improving Local Search , 1994, AAAI.
[71] Abdul Sattar,et al. Adaptive Clause Weight Redistribution , 2006, CP.
[72] Abdul Sattar,et al. Advances in Local Search for Satisfiability , 2007, Australian Conference on Artificial Intelligence.
[73] Stephan Mertens,et al. Pseudo Random Coins Show More Heads Than Tails , 2003 .
[74] Evgeny Dantsin,et al. Deterministic Algorithms for k-SAT Based on Covering Codes and Local Search , 2000, ICALP.
[75] Holger H. Hoos,et al. On the Quality and Quantity of Random Decisions in Stochastic Local Search for SAT , 2006, Canadian Conference on AI.
[76] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[77] Holger H. Hoos,et al. Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT , 2010, SAT.
[78] John Thornton,et al. Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.
[79] Mauricio G. C. Resende,et al. A continuous approach to inductive inference , 1992, Math. Program..
[80] Marco Bucci,et al. A Design of Reliable True Random Number Generator for Cryptographic Applications , 1999, CHES.
[81] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.
[82] Holger H. Hoos,et al. An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.
[83] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[84] Zhe Wu,et al. Trap Escaping Strategies in Discrete Lagrangian Methods for Solving Hard Satisfiability and Maximum Satisfiability Problems , 1999, AAAI/IAAI.
[85] Endre Szemerédi,et al. Many hard examples for resolution , 1988, JACM.
[86] Alan M. Ferrenberg,et al. Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.
[87] Edward A. Hirsch,et al. UnitWalk: A new SAT solver that uses local search guided by unit clause elimination , 2005, Annals of Mathematics and Artificial Intelligence.
[88] Gilles Audemard,et al. Predicting Learnt Clauses Quality in Modern SAT Solvers , 2009, IJCAI.
[89] Hector J. Levesque,et al. Generating Hard Satisfiability Problems , 1996, Artif. Intell..
[90] Laurent Simon,et al. The Essentials of the SAT 2003 Competition , 2003, SAT.
[91] Abdul Sattar,et al. Old Resolution Meets Modern SLS , 2005, AAAI.
[92] Andrew Slater,et al. Modelling More Realistic SAT Problems , 2002, Australian Joint Conference on Artificial Intelligence.
[93] Alex S. Fukunaga,et al. Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.
[94] Lakhdar Sais,et al. Tabu Search for SAT , 1997, AAAI/IAAI.
[95] Holger H. Hoos,et al. Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.
[96] C.H. Papadimitriou,et al. On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[97] Peter F. Stadler,et al. Towards a theory of landscapes , 1995 .
[98] Maria Luisa Bonet,et al. On the Structure of Industrial SAT Instances , 2009, CP.
[99] Inês Lynce,et al. OpenSAT: An Open Source SAT Software Project , 2003 .
[100] Andrew J. Parkes,et al. Tuning Local Search for Satisfiability Testing , 1996, AAAI/IAAI, Vol. 1.
[101] Tracy Larrabee,et al. Test pattern generation using Boolean satisfiability , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[102] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[103] Bart Selman,et al. Systematic Versus Stochastic Constraint Satisfaction , 1995, IJCAI.
[104] Toby Walsh,et al. Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.
[105] Steven David Prestwich,et al. Random Walk with Continuously Smoothed Variable Weights , 2005, SAT.
[106] John Thornton,et al. Longer-Term Memory in Clause Weighting Local Search for SAT , 2004, Australian Conference on Artificial Intelligence.
[107] Fred W. Glover,et al. Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..
[108] Wheeler Ruml,et al. Complete Local Search for Propositional Satisfiability , 2004, AAAI.
[109] Alex S. Fukunaga,et al. Automated discovery of composite SAT variable-selection heuristics , 2002, AAAI/IAAI.
[110] Dale Schuurmans,et al. Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..