Efficient formation path planning on large graphs

For the task of transferring a group of robots from one formation to another on a connected graph with unit edge lengths, we provide an efficient hierarchical algorithm that can complete goal assignment and path planning for 10,000 robots on a 250,000 vertex grid in under one second. In the extreme, our algorithm can handle up to one million robots on a grid with one billion vertices in approximately 30 minutes. Perhaps more importantly, we prove that with high probability, the algorithm supplies paths with total distance within a constant multiple of the optimal total distance. Furthermore, our hierarchical method also allows these paths to be scheduled with a tight completion time guarantee. In practice, our implementation yields a total path distance less than two times of the true optimum and a much shorter completion time.

[1]  David Silver,et al.  Cooperative Pathfinding , 2005, AIIDE.

[2]  Steven M. LaValle,et al.  Multi-agent Path Planning and Network Flow , 2012, WAFR.

[3]  Steven M. LaValle,et al.  Distance optimal formation control on graphs with a tight convergence time guarantee , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[4]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[5]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[6]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[7]  János Komlós,et al.  On optimal matchings , 1984, Comb..

[8]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[9]  Pavel Surynek,et al.  A novel approach to path planning for multiple robots in bi-connected graphs , 2009, 2009 IEEE International Conference on Robotics and Automation.

[10]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[11]  Dan Halperin,et al.  k-color multi-robot motion planning , 2014, Int. J. Robotics Res..

[12]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[13]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[14]  Alexander Zelinsky,et al.  A mobile robot exploration algorithm , 1992, IEEE Trans. Robotics Autom..

[15]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[16]  Malcolm Ross Kinsella Ryan Exploiting Subgraph Structure in Multi-Robot Path Planning , 2008, J. Artif. Intell. Res..

[17]  Péter Kovács,et al.  LEMON - an Open Source C++ Graph Template Library , 2011, WGT@ETAPS.

[18]  Richard E. Korf,et al.  Complete Algorithms for Cooperative Pathfinding Problems , 2011, IJCAI.

[19]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1998, IEEE Trans. Robotics Autom..

[21]  Dylan A. Shell,et al.  Large-scale multi-robot task allocation via dynamic partitioning and distribution , 2012, Auton. Robots.

[22]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[23]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[24]  James B. Orlin,et al.  A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.

[25]  Seth Hutchinson,et al.  Path planning for permutation-invariant multirobot formations , 2005, IEEE Transactions on Robotics.

[26]  Kostas E. Bekris,et al.  Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees , 2011, IJCAI.

[27]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[28]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[29]  Steven M. LaValle,et al.  Planning algorithms , 2006 .